Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannah G. Blitzblau is active.

Publication


Featured researches published by Hannah G. Blitzblau.


Cell | 2011

A hierarchical combination of factors shapes the genome-wide topography of yeast meiotic recombination initiation

Jing Pan; Mariko Sasaki; Ryan Kniewel; Hajime Murakami; Hannah G. Blitzblau; Sam E. Tischfield; Xuan Zhu; Matthew J. Neale; Maria Jasin; Nicholas D. Socci; Andreas Hochwagen; Scott Keeney

The nonrandom distribution of meiotic recombination influences patterns of inheritance and genome evolution, but chromosomal features governing this distribution are poorly understood. Formation of the DNA double-strand breaks (DSBs) that initiate recombination results in the accumulation of Spo11 protein covalently bound to small DNA fragments. By sequencing these fragments, we uncover a genome-wide DSB map of unprecedented resolution and sensitivity. We use this map to explore how DSB distribution is influenced by large-scale chromosome structures, chromatin, transcription factors, and local sequence composition. Our analysis offers mechanistic insight into DSB formation and early processing steps, supporting the view that the recombination terrain is molded by combinatorial and hierarchical interaction of factors that work on widely different size scales. This map illuminates the occurrence of DSBs in repetitive DNA elements, repair of which can lead to chromosomal rearrangements. We also discuss implications for evolutionary dynamics of recombination hot spots.


Current Biology | 2007

Mapping of Meiotic Single-Stranded DNA Reveals Double-Strand-Break Hotspots near Centromeres and Telomeres

Hannah G. Blitzblau; George W. Bell; Joseph Rodriguez; Stephen P. Bell; Andreas Hochwagen

BACKGROUNDnEvery chromosome requires at least one crossover to be faithfully segregated during meiosis. At least two levels of regulation govern crossover distribution: where the initiating DNA double-strand breaks (DSBs) occur and whether those DSBs are repaired as crossovers.nnnRESULTSnWe mapped meiotic DSBs in budding yeast by identifying sites of DSB-associated single-stranded DNA (ssDNA) accumulation. These analyses revealed substantial DSB activity in pericentrometric regions, in which crossover formation is largely absent. Our data suggest that centromeric suppression of recombination occurs at the level of break repair rather than DSB formation. Additionally, we found an enrichment of DSBs within a approximately 100 kb region near the ends of all chromosomes. Introduction of new telomeres was sufficient for inducing large ectopic regions of increased DSB formation, thereby revealing a remarkable long-range effect of telomeres on DSB formation. The concentration of DSBs close to chromosome ends increases the relative DSB density on small chromosomes, providing an interference-independent mechanism that ensures that all chromosomes receive at least one crossover per homolog pair.nnnCONCLUSIONSnTogether, our results indicate that selective DSB repair accounts for crossover suppression near centromeres and suggest a simple telomere-guided mechanism that ensures sufficient DSB activity on all chromosomes.


PLOS Genetics | 2012

RNA Methylation by the MIS Complex Regulates a Cell Fate Decision in Yeast

Sudeep D. Agarwala; Hannah G. Blitzblau; Andreas Hochwagen; Gerald R. Fink

For the yeast Saccharomyces cerevisiae, nutrient limitation is a key developmental signal causing diploid cells to switch from yeast-form budding to either foraging pseudohyphal (PH) growth or meiosis and sporulation. Prolonged starvation leads to lineage restriction, such that cells exiting meiotic prophase are committed to complete sporulation even if nutrients are restored. Here, we have identified an earlier commitment point in the starvation program. After this point, cells, returned to nutrient-rich medium, entered a form of synchronous PH development that was morphologically and genetically indistinguishable from starvation-induced PH growth. We show that lineage restriction during this time was, in part, dependent on the mRNA methyltransferase activity of Ime4, which played separable roles in meiotic induction and suppression of the PH program. Normal levels of meiotic mRNA methylation required the catalytic domain of Ime4, as well as two meiotic proteins, Mum2 and Slz1, which interacted and co-immunoprecipitated with Ime4. This MIS complex (Mum2, Ime4, and Slz1) functioned in both starvation pathways. Together, our results support the notion that the yeast starvation response is an extended process that progressively restricts cell fate and reveal a broad role of post-transcriptional RNA methylation in these decisions.


Nature | 2011

Protection of repetitive DNA borders from self-induced meiotic instability

Gerben Vader; Hannah G. Blitzblau; Mihoko A. Tame; Jill E. Falk; Lisa Curtin; Andreas Hochwagen

DNA double strand breaks (DSBs) in repetitive sequences are a potent source of genomic instability, owing to the possibility of non-allelic homologous recombination (NAHR). Repetitive sequences are especially at risk during meiosis, when numerous programmed DSBs are introduced into the genome to initiate meiotic recombination. In the repetitive ribosomal DNA (rDNA) array of the budding yeast Saccharomyces cerevisiae, meiotic DSB formation is prevented in part through Sir2-dependent heterochromatin formation. Here we show that the edges of the rDNA array are exceptionally susceptible to meiotic DSBs, revealing an inherent heterogeneity in the rDNA array. We find that this localized DSB susceptibility necessitates a border-specific protection system consisting of the meiotic ATPase Pch2 and the origin recognition complex subunit Orc1. Upon disruption of these factors, DSB formation and recombination increased specifically in the outermost rDNA repeats, leading to NAHR and rDNA instability. Notably, the Sir2-dependent heterochromatin of the rDNA itself was responsible for the induction of DSBs at the rDNA borders in pch2Δ cells. Thus, although the activity of Sir2 globally prevents meiotic DSBs in the rDNA, it creates a highly permissive environment for DSB formation at the junctions between heterochromatin and euchromatin. Heterochromatinized repetitive DNA arrays are abundant in most eukaryotic genomes. Our data define the borders of such chromatin domains as distinct high-risk regions for meiotic NAHR, the protection of which may be a universal requirement to prevent meiotic genome rearrangements that are associated with genomic diseases and birth defects.


PLOS Genetics | 2013

Smc5/6 Coordinates Formation and Resolution of Joint Molecules with Chromosome Morphology to Ensure Meiotic Divisions

Alice Copsey; Shangming Tang; Philip W. Jordan; Hannah G. Blitzblau; Sonya Newcombe; Andrew Chi-Ho Chan; Louise Newnham; Zhaobo Li; Stephen Gray; Alex Herbert; Prakash Arumugam; Andreas Hochwagen; Neil Hunter; Eva Hoffmann

During meiosis, Structural Maintenance of Chromosome (SMC) complexes underpin two fundamental features of meiosis: homologous recombination and chromosome segregation. While meiotic functions of the cohesin and condensin complexes have been delineated, the role of the third SMC complex, Smc5/6, remains enigmatic. Here we identify specific, essential meiotic functions for the Smc5/6 complex in homologous recombination and the regulation of cohesin. We show that Smc5/6 is enriched at centromeres and cohesin-association sites where it regulates sister-chromatid cohesion and the timely removal of cohesin from chromosomal arms, respectively. Smc5/6 also localizes to recombination hotspots, where it promotes normal formation and resolution of a subset of joint-molecule intermediates. In this regard, Smc5/6 functions independently of the major crossover pathway defined by the MutLγ complex. Furthermore, we show that Smc5/6 is required for stable chromosomal localization of the XPF-family endonuclease, Mus81-Mms4Eme1. Our data suggest that the Smc5/6 complex is required for specific recombination and chromosomal processes throughout meiosis and that in its absence, attempts at cell division with unresolved joint molecules and residual cohesin lead to severe recombination-induced meiotic catastrophe.


PLOS Genetics | 2012

Separation of DNA replication from the assembly of break-competent meiotic chromosomes.

Hannah G. Blitzblau; Clara S. Chan; Andreas Hochwagen; Stephen P. Bell

The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction. Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS) and the assembly of meiotic chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure the kinetics of pre-meiotic DNA replication and to investigate the interdependencies between replication and axis formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis and that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic chromosome axis formation occur concurrently, they are not strictly coupled. The functional separation of these processes reveals a modular method of building meiotic chromosomes and predicts that any crosstalk between these modules must occur through superimposed regulatory mechanisms.


eLife | 2013

ATR/Mec1 prevents lethal meiotic recombination initiation on partially replicated chromosomes in budding yeast

Hannah G. Blitzblau; Andreas Hochwagen

During gamete formation, crossover recombination must occur on replicated DNA to ensure proper chromosome segregation in the first meiotic division. We identified a Mec1/ATR- and Dbf4-dependent replication checkpoint in budding yeast that prevents the earliest stage of recombination, the programmed induction of DNA double-strand breaks (DSBs), when pre-meiotic DNA replication was delayed. The checkpoint acts through three complementary mechanisms: inhibition of Mer2 phosphorylation by Dbf4-dependent Cdc7 kinase, preclusion of chromosomal loading of Rec114 and Mre11, and lowered abundance of the Spo11 nuclease. Without this checkpoint, cells formed DSBs on partially replicated chromosomes. Importantly, such DSBs frequently failed to be repaired and impeded further DNA synthesis, leading to a rapid loss in cell viability. We conclude that a checkpoint-dependent constraint of DSB formation to duplicated DNA is critical not only for meiotic chromosome assortment, but also to protect genome integrity during gametogenesis. DOI: http://dx.doi.org/10.7554/eLife.00844.001


eLife | 2015

Transcription dynamically patterns the meiotic chromosome-axis interface

Xiaoji Sun; Lingzhi Huang; Tovah E. Markowitz; Hannah G. Blitzblau; Doris Chen; Franz Klein; Andreas Hochwagen

Meiotic chromosomes are highly compacted yet remain transcriptionally active. To understand how chromosome folding accommodates transcription, we investigated the assembly of the axial element, the proteinaceous structure that compacts meiotic chromosomes and promotes recombination and fertility. We found that the axial element proteins of budding yeast are flexibly anchored to chromatin by the ring-like cohesin complex. The ubiquitous presence of cohesin at sites of convergent transcription provides well-dispersed points for axis attachment and thus chromosome compaction. Axis protein enrichment at these sites directly correlates with the propensity for recombination initiation nearby. A separate modulating mechanism that requires the conserved axial-element component Hop1 biases axis protein binding towards small chromosomes. Importantly, axis anchoring by cohesin is adjustable and readily displaced in the direction of transcription by the transcriptional machinery. We propose that such robust but flexible tethering allows the axial element to promote recombination while easily adapting to changes in chromosome activity. DOI: http://dx.doi.org/10.7554/eLife.07424.001


Methods of Molecular Biology | 2011

Genome-wide detection of meiotic DNA double-strand break hotspots using single-stranded DNA.

Hannah G. Blitzblau; Andreas Hochwagen

The controlled fragmentation of chromosomes by DNA double-strand breaks (DSBs) initiates meiotic recombination, which is essential for meiotic chromosome segregation in most eukaryotes. This chapter describes a straightforward microarray-based approach to measure the genome-wide distribution of meiotic DSBs by detecting the single-stranded DNA (ssDNA) that transiently accumulates at DSB sites during recombination. The protocol outlined here has been optimized to detect meiotic DSBs in Saccharomyces cerevisiae. However, because ssDNA is a universal intermediate of homologous recombination, this method can ostensibly be adapted to discover and analyze programmed or damage-induced DSB hotspots in other organisms whose genome sequence is available.


Molecular Cell | 2018

Genomic Copy-Number Loss Is Rescued by Self-Limiting Production of DNA Circles

Andres Mansisidor; Temistocles Molinar; Priyanka Srivastava; Demetri D. Dartis; Adriana Pino Delgado; Hannah G. Blitzblau; Hannah L. Klein; Andreas Hochwagen

Copy-number changes generate phenotypic variability in health and disease. Whether organisms protect against copy-number changes is largely unknown. Here, we show that Saccharomyces cerevisiae monitors the copy number of its ribosomal DNA (rDNA) and rapidly responds to copy-number loss with the clonal amplification of extrachromosomal rDNA circles (ERCs) from chromosomal repeats. ERC formation is replicative, separable from repeat loss, and reaches a dynamic steady state that responds to the addition of exogenous rDNA copies. ERC levels are also modulated by RNAPI activity and diet, suggesting that rDNA copy number is calibrated against the cellular demand for rRNA. Last, we show that ERCs reinsert into the genome in a dosage-dependent manner, indicating that they provide a reservoir for ultimately increasing rDNA array length. Our results reveal a DNA-based mechanism for rapidly restoring copy number in response to catastrophic gene loss that shares fundamental features with unscheduled copy-number amplifications in cancer cells.

Collaboration


Dive into the Hannah G. Blitzblau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen P. Bell

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Neil Hunter

University of California

View shared research outputs
Top Co-Authors

Avatar

Shangming Tang

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge