Hannah Harrison
University of Manchester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hannah Harrison.
Cancer Research | 2010
Hannah Harrison; Gillian Farnie; Sacha J Howell; Rebecca Rock; Spyros Stylianou; Keith Brennan; N.J. Bundred; Robert B. Clarke
Notch receptor signaling pathways play an important role not only in normal breast development but also in breast cancer development and progression. We assessed the role of Notch receptors in stem cell activity in breast cancer cell lines and nine primary human tumor samples. Stem cells were enriched by selection of anoikis-resistant cells or cells expressing the membrane phenotype ESA(+)/CD44(+)/CD24(low). Using these breast cancer stem cell populations, we compared the activation status of Notch receptors with the status in luminally differentiated cells, and we evaluated the consequences of pathway inhibition in vitro and in vivo. We found that Notch4 signaling activity was 8-fold higher in stem cell-enriched cell populations compared with differentiated cells, whereas Notch1 signaling activity was 4-fold lower in the stem cell-enriched cell populations. Pharmacologic or genetic inhibition of Notch1 or Notch4 reduced stem cell activity in vitro and reduced tumor formation in vivo, but Notch4 inhibition produced a more robust effect with a complete inhibition of tumor initiation observed. Our findings suggest that Notch4-targeted therapies will be more effective than targeting Notch1 in suppressing breast cancer recurrence, as it is initiated by breast cancer stem cells.
Journal of Mammary Gland Biology and Neoplasia | 2012
Frances L. Shaw; Hannah Harrison; Katherine Spence; Matthew P. Ablett; Bruno M. Simões; Gillian Farnie; Robert B. Clarke
Since the discovery that neural tissue contains a population of stem cells that form neurospheres in vitro, sphere-forming assays have been adapted for use with a number of different tissue types for the quantification of stem cell activity and self-renewal. One tissue type widely used for stem cell investigations is mammary tissue, and the mammosphere assay has been used in both normal tissue and cancer. Although it is a relatively simple assay to learn, it can be difficult to master. There are methodological and analytical aspects to the assay which require careful consideration when interpreting the results. We describe here a detailed mammosphere assay protocol for the assessment of stem cell activity and self-renewal, and discuss how data generated by the assay can be analysed and interpreted.
Cancer Research | 2010
Hannah Harrison; Gillian Farnie; Keith Brennan; Robert B. Clarke
We and others have established that the developmental Notch receptor signaling pathway is active in breast cancer cell lines, as well as in preinvasive and invasive primary samples. Recently, a role for Notch in regulating the hierarchy of stem and progenitor cells in both normal and cancer epithelium has been elucidated. Because inhibiting the Notch receptor signaling pathway is a possible future breast cancer therapy, here, we review the expression and activity of the different ligands and receptors and summarize the various ways in which the pathways activity can be inhibited, and the likely effects of inhibition on different tumor cell subpopulations.
Breast Cancer Research | 2013
Hannah Harrison; Bruno M. Simões; Lynsey Rogerson; Sacha J Howell; Göran Landberg; Robert B. Clarke
IntroductionAlthough oestrogen is essential for the development of the normal breast, adult mammary stem cells are known to be oestrogen receptor alpha (ER) negative and rely on paracrine signals in the mammary epithelium for mediation of developmental cues. However, little is known about how systemic oestrogen regulates breast cancer stem cell (CSC) activity.MethodsHere, we tested the effects of oestrogen on CSC activity in vitro and in vivo and investigated which paracrine signalling pathways locally mediate oestrogen effects.ResultsCSC-enriched populations (ESA+CD44+CD24low) sorted from ER positive patient derived and established cell lines have low or absent ER expression. However, oestrogen stimulated CSC activity demonstrated by increased mammosphere and holoclone formation in vitro and tumour formation in vivo. This effect was abrogated by the anti-oestrogen tamoxifen or ER siRNA. These data suggest that the oestrogen response is mediated through paracrine signalling from non-CSCs to CSCs. We have, therefore, investigated both epidermal growth factor (EGF) and Notch receptor signals downstream of oestrogen. We demonstrate that gefitinib (epidermal growth factor receptor (EGFR) inhibitor) and gamma secretase inhibitors (Notch inhibitor) block oestrogen-induced CSC activity in vitro and in vivo but GSIs more efficiently reduce CSC frequency.ConclusionsThese data establish that EGF and Notch receptor signalling pathways operate downstream of oestrogen in the regulation of ER negative CSCs.
Cancer Research | 2013
Hannah Harrison; Lynsey Rogerson; Hannah J. Gregson; Keith Brennan; Robert B. Clarke; Göran Landberg
Tumor hypoxia is often linked to decreased survival in patients with breast cancer and current therapeutic strategies aim to target the hypoxic response. One way in which this is done is by blocking hypoxia-induced angiogenesis. Antiangiogenic therapies show some therapeutic potential with increased disease-free survival, but these initial promising results are short lived and followed by tumor progression. We hypothesized that this may be due to altered cancer stem cell (CSC) activity resulting from increased tumor hypoxia. We studied the effects of hypoxia on CSC activity, using in vitro mammosphere and holoclone assays as well as in vivo limiting dilution experiments, in 13 patient-derived samples and four cell lines. There was a HIF-1α-dependent CSC increase in ER-α-positive cancers following hypoxic exposure, which was blocked by inhibition of estrogen and Notch signaling. A contrasting decrease in CSC was seen in ER-α-negative cancers. We next developed a xenograft model of cell lines and patient-derived samples to assess the hypoxic CSC response. Varying sizes of xenografts were collected and analyzed for HIF1-α expression and CSC. The same ER-α-dependent contrasting hypoxic-CSC response was seen validating the initial observation. These data suggest that ER-α-positive and negative breast cancer subtypes respond differently to hypoxia and, as a consequence, antiangiogenic therapies will not be suitable for both subgroups.
PLOS ONE | 2011
Zvia Agur; Oleg U. Kirnasovsky; Genadiy Vasserman; Lilach Tencer-Hershkowicz; Yuri Kogan; Hannah Harrison; Rebecca Lamb; Robert B. Clarke
Background Modulation of cellular signaling pathways can change the replication/differentiation balance in cancer stem cells (CSCs), thus affecting tumor growth and recurrence. Analysis of a simple, experimentally verified, mathematical model suggests that this balance is maintained by quorum sensing (QS). Methodology/Principal Findings To explore the mechanism by which putative QS cellular signals in mammary stem cells (SCs) may regulate SC fate decisions, we developed a multi-scale mathematical model, integrating extra-cellular and intra-cellular signal transduction within the mammary tissue dynamics. Preliminary model analysis of the single cell dynamics indicated that Dickkopf1 (Dkk1), a protein known to negatively regulate the Wnt pathway, can serve as anti-proliferation and pro-maturation signal to the cell. Simulations of the multi-scale tissue model suggested that Dkk1 may be a QS factor, regulating SC density on the level of the whole tissue: relatively low levels of exogenously applied Dkk1 have little effect on SC numbers, whereas high levels drive SCs into differentiation. To verify these model predictions, we treated the MCF-7 cell line and primary breast cancer (BC) cells from 3 patient samples with different concentrations and dosing regimens of Dkk1, and evaluated subsequent formation of mammospheres (MS) and the mammary SC marker CD44+CD24lo. As predicted by the model, low concentrations of Dkk1 had no effect on primary BC cells, or even increased MS formation among MCF-7 cells, whereas high Dkk1 concentrations decreased MS formation among both primary BC cells and MCF-7 cells. Conclusions/Significance Our study suggests that Dkk1 treatment may be more robust than other methods for eliminating CSCs, as it challenges a general cellular homeostasis mechanism, namely, fate decision by QS. The study also suggests that low dose Dkk1 administration may be counterproductive; we showed experimentally that in some cases it can stimulate CSC proliferation, although this needs validating in vivo.
Clinical Cancer Research | 2013
Lana McClements; Anita Yakkundi; Angelos Papaspyropoulos; Hannah Harrison; Matthew P. Ablett; Puthen V. Jithesh; Hayley D. McKeen; Rachel Bennett; Christopher Donley; Adrien Kissenpfennig; Stuart McIntosh; Helen O. McCarthy; Eric O'Neill; Robert B. Clarke; Tracy Robson
Purpose: FK506-binding protein like (FKBPL) and its peptide derivative, AD-01, have already shown tumor growth inhibition and CD44-dependent antiangiogenic activity. Here, we explore the ability of AD-01 to target CD44-positive breast cancer stem cells (BCSC). Experimental Design: Mammosphere assays and flow cytometry were used to analyze the effect of FKBPL overexpression/knockdown and AD-01 treatment ± other anticancer agents on BCSCs using breast cancer cell lines (MCF-7/MDA-231/ZR-75), primary patient samples, and xenografts. Delays in tumor initiation were evaluated in vivo. The anti–stem cell mechanisms were determined using clonogenic assays, quantitative PCR (qPCR), and immunofluorescence. Results: AD-01 treatment was highly effective at inhibiting the BCSC population by reducing mammosphere-forming efficiency and ESA+/CD44+/CD24− or aldehyde dehydrogenase (ALDH)+ cell subpopulations in vitro and tumor initiation in vivo. The ability of AD-01 to inhibit the self-renewal capacity of BCSCs was confirmed; mammospheres were completely eradicated by the third generation. The mechanism seems to be due to AD-01–mediated BCSC differentiation shown by a significant decrease in the number of holoclones and an associated increase in meroclones/paraclones; the stem cell markers, Nanog, Oct4, and Sox2, were also significantly reduced. Furthermore, we showed additive inhibitory effects when AD-01 was combined with the Notch inhibitor, DAPT. AD-01 was also able to abrogate a chemo- and radiotherapy-induced enrichment in BCSCs. Finally, FKBPL knockdown led to an increase in Nanog/Oct4/Sox2 and an increase in BCSCs, highlighting a role for endogenous FKBPL in stem cell signaling. Conclusions: AD-01 has dual antiangiogenic and anti-BCSC activity, which will be advantageous as this agent enters clinical trial. Clin Cancer Res; 19(14); 3881–93. ©2013 AACR.
Ernst Schering Foundation symposium proceedings. 2007;(1):1-23. | 2008
Rebecca Lamb; Hannah Harrison; Robert B. Clarke
The mammary gland begins development during embryogenesis but after exposure to hormonal changes during puberty and pregnancy undergoes extensive further development. Hormonal changes are key regulators in the cycles of proliferation, differentiation, apoptosis and remodelling associated with pregnancy, lactation and involution following weaning. These developmental processes within the breast epithelium can be explained by the presence of a long-lived population of tissue-specific stem cells. The longevity of these stem cells makes them susceptible to accumulating genetic change and consequent transformation. The ovarian steroid progesterone, acting via the secreted factor Wnt4, is known to be essential for side branching of the mammary gland. One function of Wnt proteins is self-renewal of adult tissue stem cells, suggesting that progesterone may exert its effects within the breast, at least partly, by regulating the mammary stem cell population.
Leukemia Research | 2010
Madhuri Warren; Yeun Jun Chung; William J. Howat; Hannah Harrison; Ralph McGinnis; Xingpei Hao; John McCafferty; Torgny N. Fredrickson; Allan Bradley; Herbert C. Morse
Mutations in the BLM gene cause human Bloom syndrome (BS), an autosomal recessive disorder of growth retardation, immunodeficiency and cancer predisposition. Homozygous null Blm(m3/m3) mice are cancer prone with a 5-fold increased risk of cancer compared with Blm(m3/+) and Blm(+/+) mice. Irradiation of Blm(m3/m3) mice increased the risk to 28-fold. Tumors occurred mainly in the hematopoietic system and were similar to those in BS based on detailed histologic and immunohistochemical analyses. Irradiated Blm-deficient mice thus provide a novel model for understanding accelerated malignancies in BS and a new platform for investigating the molecular basis for a wide range of hematopoietic neoplasms.
Oncotarget | 2017
Hudhaifah Shaker; Hannah Harrison; Robert B. Clarke; Göran Landberg; N.J. Bundred; Henri H. Versteeg; Cliona C. Kirwan
Cancer stem cells (CSCs) are a subpopulation of cells that can self-renew and initiate tumours. The clotting-initiating protein Tissue Factor (TF) promotes metastasis and may be overexpressed in cancer cells with increased CSC activity. We sought to determine whether TF promotes breast CSC activity in vitro using human breast cancer cell lines. TF expression was compared in anoikis-resistant (CSC-enriched) and unselected cells. In cells sorted into of TF-expressing and TF-negative (FACS), and in cells transfected to knockdown TF (siRNA) and overexpress TF (cDNA), CSC activity was compared by (i) mammosphere forming efficiency (MFE) (ii) holoclone colony formation (Hc) and (iii) ALDH1 activity. TF expression was increased in anoikis-resistant and high ALDH1-activity T47D cells compared to unselected cells. FACS sorted TF-expressing T47Ds and TF-overexpressing MCF7s had increased CSC activity compared to TF-low cells. TF siRNA cells (MDAMB231, T47D) had reduced CSC activity compared to control cells. FVIIa increased MFE and ALDH1 in a dose-dependent manner (MDAMB231, T47D). The effects of FVIIa on MFE were abrogated by TF siRNA (T47D). Breast CSCs (in vitro) demonstrate increased activity when selected for high TF expression, when induced to overexpress TF, and when stimulated (with FVIIa). Targeting the TF pathway in vivo may abrogate CSC activity.