Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannah J. Gaunt is active.

Publication


Featured researches published by Hannah J. Gaunt.


Angewandte Chemie | 2015

Englerin A is a Potent and Selective Activator of TRPC4 and TRPC5 Calcium Channels

Yasemin Akbulut; Hannah J. Gaunt; Katsuhiko Muraki; Melanie J. Ludlow; Mohamed S Amer; Alexander F. Bruns; Naveen S. Vasudev; Lea Radtke; Matthieu Willot; Sven Hahn; Tobias Seitz; Slava Ziegler; Mathias Christmann; David J. Beech; Herbert Waldmann

Current therapies for common types of cancer such as renal cell cancer are often ineffective and unspecific, and novel pharmacological targets and approaches are in high demand. Here we show the unexpected possibility for the rapid and selective killing of renal cancer cells through activation of calcium-permeable nonselective transient receptor potential canonical (TRPC) calcium channels by the sesquiterpene (-)-englerin A. This compound was found to be a highly efficient, fast-acting, potent, selective, and direct stimulator of TRPC4 and TRPC5 channels. TRPC4/5 activation through a high-affinity extracellular (-)-englerin A binding site may open up novel opportunities for drug discovery aimed at renal cancer.


Nature Communications | 2017

Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance

Baptiste Rode; Jian Shi; Naima Endesh; Mark J. Drinkhill; Peter J. Webster; Sabine Lotteau; Marc A. Bailey; Nadira Yuldasheva; Melanie J. Ludlow; Richard M. Cubbon; Jing Li; T. Simon Futers; Lara Morley; Hannah J. Gaunt; Katarzyna Marszalek; Hema Viswambharan; Kevin Cuthbertson; Paul D. Baxter; Richard Foster; Piruthivi Sukumar; Andrew Weightman; Sarah Calaghan; Stephen B. Wheatcroft; Mark T. Kearney; David J. Beech

Mammalian biology adapts to physical activity but the molecular mechanisms sensing the activity remain enigmatic. Recent studies have revealed how Piezo1 protein senses mechanical force to enable vascular development. Here, we address Piezo1 in adult endothelium, the major control site in physical activity. Mice without endothelial Piezo1 lack obvious phenotype but close inspection reveals a specific effect on endothelium-dependent relaxation in mesenteric resistance artery. Strikingly, the Piezo1 is required for elevated blood pressure during whole body physical activity but not blood pressure during inactivity. Piezo1 is responsible for flow-sensitive non-inactivating non-selective cationic channels which depolarize the membrane potential. As fluid flow increases, depolarization increases to activate voltage-gated Ca2+ channels in the adjacent vascular smooth muscle cells, causing vasoconstriction. Physical performance is compromised in mice which lack endothelial Piezo1 and there is weight loss after sustained activity. The data suggest that Piezo1 channels sense physical activity to advantageously reset vascular control.The mechanisms that regulate the body’s response to exercise are poorly understood. Here, Rode et al. show that the mechanically activated cation channel Piezo1 is a molecular sensor of physical exercise in the endothelium that triggers endothelial communication to mesenteric vessel muscle cells, leading to vasoconstriction.


Journal of Biological Chemistry | 2017

Picomolar, selective, and subtype-specific small-molecule inhibition of TRPC1/4/5 channels

Hussein N. Rubaiy; Melanie J. Ludlow; Matthias Henrot; Hannah J. Gaunt; Katarina T. Miteva; Sin Ying Cheung; Yasuyuki Tanahashi; Nurasyikin Hamzah; Katie E. Musialowski; Nicola M Blythe; Hollie L. Appleby; Marc A. Bailey; Lynn McKeown; Roger Taylor; Richard Foster; Herbert Waldmann; Peter Nussbaumer; Mathias Christmann; Robin S. Bon; Katsuhiko Muraki; David J. Beech

The concentration of free cytosolic Ca2+ and the voltage across the plasma membrane are major determinants of cell function. Ca2+-permeable non-selective cationic channels are known to regulate these parameters, but understanding of these channels remains inadequate. Here we focus on transient receptor potential canonical 4 and 5 proteins (TRPC4 and TRPC5), which assemble as homomers or heteromerize with TRPC1 to form Ca2+-permeable non-selective cationic channels in many mammalian cell types. Multiple roles have been suggested, including in epilepsy, innate fear, pain, and cardiac remodeling, but limitations in tools to probe these channels have restricted progress. A key question is whether we can overcome these limitations and develop tools that are high-quality, reliable, easy to use, and readily accessible for all investigators. Here, through chemical synthesis and studies of native and overexpressed channels by Ca2+ and patch-clamp assays, we describe compound 31, a remarkable small-molecule inhibitor of TRPC1/4/5 channels. Its potency ranged from 9 to 1300 pm, depending on the TRPC1/4/5 subtype and activation mechanism. Other channel types investigated were unaffected, including TRPC3, TRPC6, TRPV1, TRPV4, TRPA1, TRPM2, TRPM8, and store-operated Ca2+ entry mediated by Orai1. These findings suggest identification of an important experimental tool compound, which has much higher potency for inhibiting TRPC1/4/5 channels than previously reported agents, impressive specificity, and graded subtype selectivity within the TRPC1/4/5 channel family. The compound should greatly facilitate future studies of these ion channels. We suggest naming this TRPC1/4/5-inhibitory compound Pico145.


Journal of Biological Chemistry | 2017

(−)-Englerin A-evoked Cytotoxicity Is Mediated by Na+Influx and Counteracted by Na+/K+-ATPase

Melanie J. Ludlow; Hannah J. Gaunt; Hussein N. Rubaiy; Katie E. Musialowski; Nicola M Blythe; Naveen S. Vasudev; Katsuhiko Muraki; David J. Beech

(−)-Englerin A ((−)-EA) has a rapid and potent cytotoxic effect on several types of cancer cell that is mediated by plasma membrane ion channels containing transient receptor potential canonical 4 (TRPC4) protein. Because these channels are Ca2+-permeable, it was initially thought that the cytotoxicity arose as a consequence of Ca2+ overload. Here we show that this is not the case and that the effect of (−)-EA is mediated by a heteromer of TRPC4 and TRPC1 proteins. Both TRPC4 and TRPC1 were required for (−)-EA cytotoxicity; however, although TRPC4 was necessary for the (−)-EA-evoked Ca2+ elevation, TRPC1 was not. TRPC1 either had no role or was a negative regulator of Ca2+ entry. By contrast, both TRPC4 and TRPC1 were necessary for monovalent cation entry evoked by (−)-EA, and (−)-EA-evoked cell death was dependent upon entry of the monovalent cation Na+. We therefore hypothesized that Na+/K+-ATPase might act protectively by counteracting the Na+ load resulting from sustained Na+ entry. Indeed, inhibition of Na+/K+-ATPase by ouabain potently and strongly increased (−)-EA-evoked cytotoxicity. The data suggest that (−)-EA achieves cancer cell cytotoxicity by inducing sustained Na+ entry through heteromeric TRPC1/TRPC4 channels and that the cytotoxic effect of (−)-EA can be potentiated by Na+/K+-ATPase inhibition.


British Journal of Pharmacology | 2016

Natural and synthetic flavonoid modulation of TRPC5 channels

Jacqueline Naylor; Aisling Minard; Hannah J. Gaunt; Mohamed S Amer; Lesley A. Wilson; Marco Migliore; Sin Y Cheung; Hussein N. Rubaiy; Nicola M Blythe; Katie E. Musialowski; Melanie J. Ludlow; William D Evans; Ben L Green; Hongjun Yang; Yun You; Jing Li; Colin W. G. Fishwick; Katsuhiko Muraki; David J. Beech; Robin S. Bon

The TRPC5 proteins assemble to create calcium‐permeable, non‐selective, cationic channels. We sought novel modulators of these channels through studies of natural products.


Cell Cycle | 2017

AZD1775 Induces Toxicity Through Double-Stranded DNA Breaks Independently of Chemotherapeutic Agents in p53-Mutated Colorectal Cancer Cells.

Peter J. Webster; At Littlejohns; Hannah J. Gaunt; Kr Prasad; David J. Beech; Da Burke

ABSTRACT AZD1775 is a small molecule WEE1 inhibitor used in combination with DNA-damaging agents to cause premature mitosis and cell death in p53-mutated cancer cells. Here we sought to determine the mechanism of action of AZD1775 in combination with chemotherapeutic agents in light of recent findings that AZD1775 can cause double-stranded DNA (DS-DNA) breaks. AZD1775 significantly improved the cytotoxicity of 5-FU in a p53-mutated colorectal cancer cell line (HT29 cells), decreasing the IC50 from 9.3 μM to 3.5 μM. Flow cytometry showed a significant increase in the mitotic marker pHH3 (3.4% vs. 56.2%) and DS-DNA break marker γH2AX (5.1% vs. 50.7%) for combination therapy compared with 5-FU alone. Combination therapy also increased the amount of caspase-3 dependent apoptosis compared with 5-FU alone (4% vs. 13%). The addition of exogenous nucleosides to combination therapy significantly rescued the increased DS-DNA breaks and caspase-3 dependent apoptosis almost to the levels of 5-FU monotherapy. In conclusion, AZD1775 enhances 5-FU cytotoxicity through increased DS-DNA breaks, not premature mitosis, in p53-mutated colorectal cancer cells. This finding is important for designers of future clinical trials when considering the optimal timing and duration of AZD1775 treatment.


Scientific Reports | 2018

Homotypic endothelial nanotubes induced by wheat germ agglutinin and thrombin

Lucia Pedicini; Katarina T. Miteva; Verity Hawley; Hannah J. Gaunt; Hollie L. Appleby; Richard M. Cubbon; Katarzyna Marszalek; Mark T. Kearney; David J. Beech; Lynn McKeown

Endothelial barrier formation is maintained by intercellular communication through junctional proteins. The mechanisms involved in maintaining endothelial communication subsequent to barrier disruption remain unclear. It is known that low numbers of endothelial cells can be interconnected by homotypic actin-driven tunneling nanotubes (TNTs) which could be important for intercellular transfer of information in vascular physiology. Here we sought insight into the triggers for TNT formation. Wheat germ agglutinin, a C-type lectin and known label for TNTs, unexpectedly caused striking induction of TNTs. A succinylated derivative was by contrast inactive, suggesting mediation by a sialylated protein. Through siRNA-mediated knockdown we identified that this protein was likely to be CD31, an important sialylated membrane protein normally at endothelial cell junctions. We subsequently considered thrombin as a physiological inducer of endothelial TNTs because it reduces junctional contact. Thrombin reduced junctional contact, redistributed CD31 and induced TNTs, but its effect on TNTs was CD31-independent. Thrombin-induced TNTs nevertheless required PKCα, a known mediator of thrombin-dependent junctional remodelling, suggesting a necessity for junctional proteins in TNT formation. Indeed, TNT-inducing effects of wheat germ agglutinin and thrombin were both correlated with cortical actin rearrangement and similarly Ca2+-dependent, suggesting common underlying mechanisms. Once formed, Ca2+ signalling along TNTs was observed.


British Journal of Pharmacology | 2018

Yoda1 analogue (Dooku1) which antagonises Yoda1-evoked activation of Piezo1 and aortic relaxation.

Elizabeth L Evans; Kevin Cuthbertson; Naima Endesh; Baptiste Rode; Nicola M Blythe; Adam J. Hyman; Sally J Hall; Hannah J. Gaunt; Melanie J. Ludlow; Richard Foster; David J. Beech

The mechanosensitive Piezo1 channel has important roles in vascular physiology and disease. Yoda1 is a small‐molecule agonist, but the pharmacology of these channels is otherwise limited.


Oncotarget | 2017

Upregulated WEE1 protects endothelial cells of colorectal cancer liver metastases

Peter J. Webster; Anna T. Littlejohns; Hannah J. Gaunt; Richard Young; Baptiste Rode; Judith E. Ritchie; Lucy F. Stead; Sally M. Harrison; Alastair Droop; Heather L. Martin; Darren C. Tomlinson; Adam J. Hyman; Hollie L. Appleby; Sally Boxall; Alexander F. Bruns; Jing Li; K. Raj Prasad; J. Peter A. Lodge; Dermot Burke; David J. Beech

Surgical resection of colorectal cancer liver metastases (CLM) can be curative, yet 80% of patients are unsuitable for this treatment. As angiogenesis is a determinant of CLM progression we isolated endothelial cells from CLM and sought a mechanism which is upregulated, essential for angiogenic properties of these cells and relevant to emerging therapeutic options. Matched CLM endothelial cells (CLMECs) and endothelial cells of normal adjacent liver (LiECs) were superficially similar but transcriptome sequencing revealed molecular differences, one of which was unexpected upregulation and functional significance of the checkpoint kinase WEE1. Western blotting confirmed that WEE1 protein was upregulated in CLMECs. Knockdown of WEE1 by targeted short interfering RNA or the WEE1 inhibitor AZD1775 suppressed proliferation and migration of CLMECs. Investigation of the underlying mechanism suggested induction of double-stranded DNA breaks due to nucleotide shortage which then led to caspase 3-dependent apoptosis. The implication for CLMEC tube formation was striking with AZD1775 inhibiting tube branch points by 83%. WEE1 inhibitors might therefore be a therapeutic option for CLM and could be considered more broadly as anti-angiogenic agents in cancer treatment.


Molecular Human Reproduction | 2018

Piezo1 channels are mechanosensors in human fetoplacental endothelial cells

L C Morley; J Shi; Hannah J. Gaunt; A J Hyman; Peter J. Webster; C Williams; Karen Forbes; James J. Walker; Nigel Simpson; David J. Beech

Abstract STUDY QUESTION Does the shear stress sensing ion channel subunit Piezo1 have an important mechanotransduction role in human fetoplacental endothelium? SUMMARY ANSWER Piezo1 is present and functionally active in human fetoplacental endothelial cells, and disruption of Piezo1 prevents the normal response to shear stress. WHAT IS KNOWN ALREADY Shear stress is an important stimulus for maturation and function of placental vasculature but the molecular mechanisms by which the force is detected and transduced are unclear. Piezo1 channels are Ca2+-permeable non-selective cationic channels which are critical for shear stress sensing and maturation of murine embryonic vasculature. STUDY DESIGN, SAMPLES/MATERIALS, METHODS We investigated the relevance of Piezo1 to placental vasculature by studying human fetoplacental endothelial cells (FpECs) from healthy pregnancies. Endothelial cells were isolated from placental cotyledons and cultured, for the study of tube formation and cell alignment to shear stress. In addition, human placental arterial endothelial cells were isolated and studied immediately by patch-clamp electrophysiology. MAIN RESULTS AND THE ROLE OF CHANCE The synthetic Piezo1 channel agonist Yoda1 caused strong elevation of the intracellular Ca2+ concentration with a 50% effect occurring at about 5.4 μM. Knockdown of Piezo1 by RNA interference suppressed the Yoda1 response, consistent with it being mediated by Piezo1 channels. Alignment of cells to the direction of shear stress was also suppressed by Piezo1 knockdown without loss of cell viability. Patch-clamp recordings from freshly isolated endothelium showed shear stress-activated single channels which were characteristic of Piezo1. LIMITATIONS, REASONS FOR CAUTION The in vitro nature of fetoplacental endothelial cell isolation and subsequent culture may affect FpEC characteristics and PIEZO1 expression. In addition to Piezo1, alternative shear stress sensing mechanisms have been suggested in other systems and might also contribute in the placenta. WIDER IMPLICATIONS OF THE FINDINGS These data suggest that Piezo1 is an important molecular determinant of blood flow sensitivity in the placenta. Establishing and manipulating the molecular mechanisms regulating shear stress sensing could lead to novel therapeutic strategies to improve blood flow in the placenta. LARGE-SCALE DATA Not applicable. STUDY FUNDING/COMPETING INTEREST(S) LCM was funded by a Clinical Research Training Fellowship from the Medical Research Council and by the Royal College of Obstetricians and Gynaecologists, and has received support from a Wellcome Trust Institutional Strategic Support Fund. JS was supported by the Wellcome Trust and a BHF Intermediate Research Fellowship. HJG, CW, AJH and PJW were supported by PhD Studentships from BHF, BBSRC and the Leeds Teaching Hospitals Charitable Foundation respectively. All authors declare no conflict of interest.

Collaboration


Dive into the Hannah J. Gaunt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge