Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannah L. Klein is active.

Publication


Featured researches published by Hannah L. Klein.


Annual Review of Biochemistry | 2008

Mechanism of Eukaryotic Homologous Recombination

Joseph San Filippo; Patrick Sung; Hannah L. Klein

Homologous recombination (HR) serves to eliminate deleterious lesions, such as double-stranded breaks and interstrand crosslinks, from chromosomes. HR is also critical for the preservation of replication forks, for telomere maintenance, and chromosome segregation in meiosis I. As such, HR is indispensable for the maintenance of genome integrity and the avoidance of cancers in humans. The HR reaction is mediated by a conserved class of enzymes termed recombinases. Two recombinases, Rad51 and Dmc1, catalyze the pairing and shuffling of homologous DNA sequences in eukaryotic cells via a filamentous intermediate on ssDNA called the presynaptic filament. The assembly of the presynaptic filament is a rate-limiting process that is enhanced by recombination mediators, such as the breast tumor suppressor BRCA2. HR accessory factors that facilitate other stages of the Rad51- and Dmc1-catalyzed homologous DNA pairing and strand exchange reaction have also been identified. Recent progress on elucidating the mechanisms of action of Rad51 and Dmc1 and their cohorts of ancillary factors is reviewed here.


Nature | 2003

DNA helicase Srs2 disrupts the Rad51 presynaptic filament

Lumir Krejci; Stephen Van Komen; Ying Li; Jana Villemain; Mothe Sreedhar Reddy; Hannah L. Klein; Thomas E. Ellenberger; Patrick Sung

Mutations in the Saccharomyces cerevisiae gene SRS2 result in the yeasts sensitivity to genotoxic agents, failure to recover or adapt from DNA damage checkpoint-mediated cell cycle arrest, slow growth, chromosome loss, and hyper-recombination. Furthermore, double mutant strains, with mutations in DNA helicase genes SRS2 and SGS1, show low viability that can be overcome by inactivating recombination, implying that untimely recombination is the cause of growth impairment. Here we clarify the role of SRS2 in recombination modulation by purifying its encoded product and examining its interactions with the Rad51 recombinase. Srs2 has a robust ATPase activity that is dependent on single-stranded DNA (ssDNA) and binds Rad51, but the addition of a catalytic quantity of Srs2 to Rad51-mediated recombination reactions causes severe inhibition of these reactions. We show that Srs2 acts by dislodging Rad51 from ssDNA. Thus, the attenuation of recombination efficiency by Srs2 stems primarily from its ability to dismantle the Rad51 presynaptic filament efficiently. Our findings have implications for the basis of Blooms and Werners syndromes, which are caused by mutations in DNA helicases and are characterized by increased frequencies of recombination and a predisposition to cancers and accelerated ageing.


Nature Reviews Molecular Cell Biology | 2006

Mechanism of homologous recombination: mediators and helicases take on regulatory functions

Patrick Sung; Hannah L. Klein

Homologous recombination (HR) is an important mechanism for the repair of damaged chromosomes, for preventing the demise of damaged replication forks, and for several other aspects of chromosome maintenance. As such, HR is indispensable for genome integrity, but it must be regulated to avoid deleterious events. Mutations in the tumour-suppressor protein BRCA2, which has a mediator function in HR, lead to cancer formation. DNA helicases, such as Blooms syndrome protein (BLM), regulate HR at several levels, in attenuating unwanted HR events and in determining the outcome of HR. Defects in BLM are also associated with the cancer phenotype. The past several years have witnessed dramatic advances in our understanding of the mechanism and regulation of HR.


Cell | 1998

Prefoldin, a Chaperone that Delivers Unfolded Proteins to Cytosolic Chaperonin

Irina E. Vainberg; Sally A. Lewis; Heidi Rommelaere; Christophe Ampe; Joël Vandekerckhove; Hannah L. Klein; Nicholas J. Cowan

We describe the discovery of a heterohexameric chaperone protein, prefoldin, based on its ability to capture unfolded actin. Prefoldin binds specifically to cytosolic chaperonin (c-cpn) and transfers target proteins to it. Deletion of the gene encoding a prefoldin subunit in S. cerevisiae results in a phenotype similar to those found when c-cpn is mutated, namely impaired functions of the actin and tubulin-based cytoskeleton. Consistent with prefoldin having a general role in chaperonin-mediated folding, we identify homologs in archaea, which have a class II chaperonin but contain neither actin nor tubulin. We show that by directing target proteins to chaperonin, prefoldin promotes folding in an environment in which there are many competing pathways for nonnative proteins.


DNA Repair | 2008

The consequences of Rad51 overexpression for normal and tumor cells

Hannah L. Klein

The Rad51 recombinase is an essential factor for homologous recombination and the repair of DNA double strand breaks, binding transiently to both single stranded and double stranded DNA during the recombination reaction. The use of a homologous recombination mechanism to repair DNA damage is controlled at several levels, including the binding of Rad51 to single stranded DNA to form the Rad51 nucleofilament, which is controlled through the action of DNA helicases that can counteract nucleofilament formation. Overexpression of Rad51 in different organisms and cell types has a wide assortment of consequences, ranging from increased homologous recombination and increased resistance to DNA damaging agents to disruption of the cell cycle and apoptotic cell death. Rad51 expression is increased in p53-negative cells, and since p53 is often mutated in tumor cells, there is a tendency for Rad51 to be overexpressed in tumor cells, leading to increased resistance to DNA damage and drugs used in chemotherapies. As cells with increased Rad51 levels are more resistant to DNA damage, there is a selection for tumor cells to have higher Rad51 levels. While increased Rad51 can provide drug resistance, it also leads to increased genomic instability and may contribute to carcinogenesis.


Genes & Development | 2009

Yeast Mph1 helicase dissociates Rad51-made D-loops: implications for crossover control in mitotic recombination

Rohit Prakash; Dominik Satory; Eloı̈se Dray; Almas Papusha; Jürgen Scheller; Wilfried Kramer; Lumir Krejci; Hannah L. Klein; James E. Haber; Patrick Sung; Grzegorz Ira

Eukaryotes possess mechanisms to limit crossing over during homologous recombination, thus avoiding possible chromosomal rearrangements. We show here that budding yeast Mph1, an ortholog of human FancM helicase, utilizes its helicase activity to suppress spontaneous unequal sister chromatid exchanges and DNA double-strand break-induced chromosome crossovers. Since the efficiency and kinetics of break repair are unaffected, Mph1 appears to channel repair intermediates into a noncrossover pathway. Importantly, Mph1 works independently of two other helicases-Srs2 and Sgs1-that also attenuate crossing over. By chromatin immunoprecipitation, we find targeting of Mph1 to double-strand breaks in cells. Purified Mph1 binds D-loop structures and is particularly adept at unwinding these structures. Importantly, Mph1, but not a helicase-defective variant, dissociates Rad51-made D-loops. Overall, the results from our analyses suggest a new role of Mph1 in promoting the noncrossover repair of DNA double-strand breaks.


Molecular and Cellular Biology | 2001

Genetic requirements for RAD51- and RAD54-independent break-induced replication repair of a chromosomal double-strand break.

Laurence Signon; Anna Malkova; Maria L. Naylor; Hannah L. Klein; James E. Haber

ABSTRACT Broken chromosomes can be repaired by several homologous recombination mechanisms, including gene conversion and break-induced replication (BIR). In Saccharomyces cerevisiae, an HO endonuclease-induced double-strand break (DSB) is normally repaired by gene conversion. Previously, we have shown that in the absence ofRAD52, repair is nearly absent and diploid cells lose the broken chromosome; however, in cells lacking RAD51, gene conversion is absent but cells can repair the DSB by BIR. We now report that gene conversion is also abolished when RAD54, RAD55, and RAD57 are deleted but BIR occurs, as withrad51Δ cells. DSB-induced gene conversion is not significantly affected when RAD50, RAD59, TID1(RDH54), SRS2, or SGS1 is deleted. Various double mutations largely eliminate both gene conversion and BIR, including rad51Δ rad50Δ, rad51Δ rad59Δ, andrad54Δ tid1Δ. These results demonstrate that there is aRAD51- and RAD54-independent BIR pathway that requires RAD59, TID1, RAD50, and presumablyMRE11 and XRS2. The similar genetic requirements for BIR and telomere maintenance in the absence of telomerase also suggest that these two processes proceed by similar mechanisms.


Molecular and Cellular Biology | 1999

A Complex Containing RNA Polymerase II, Paf1p, Cdc73p, Hpr1p, and Ccr4p Plays a Role in Protein Kinase C Signaling

Meiping Chang; Delores French-Cornay; Hua-ying Fan; Hannah L. Klein; Clyde L. Denis; Judith A. Jaehning

ABSTRACT Yeast contains at least two complex forms of RNA polymerase II (Pol II), one including the Srbps and a second biochemically distinct form defined by the presence of Paf1p and Cdc73p (X. Shi et al., Mol. Cell. Biol. 17:1160–1169, 1997). In this work we demonstrate that Ccr4p and Hpr1p are components of the Paf1p-Cdc73p-Pol II complex. We have found many synthetic genetic interactions between factors within the Paf1p-Cdc73p complex, including the lethality of paf1Δ ccr4Δ, paf1Δ hpr1Δ, ccr4Δ hpr1Δ, and ccr4Δ gal11Δ double mutants. In addition, paf1Δ and ccr4Δ are lethal in combination with srb5Δ, indicating that the factors within and between the two RNA polymerase II complexes have overlapping essential functions. We have used differential display to identify several genes whose expression is affected by mutations in components of the Paf1p-Cdc73p-Pol II complex. Additionally, as previously observed for hpr1Δ, deleting PAF1 orCDC73 leads to elevated recombination between direct repeats. The paf1Δ and ccr4Δ mutations, as well as gal11Δ, demonstrate sensitivity to cell wall-damaging agents, rescue of the temperature-sensitive phenotype by sorbitol, and reduced expression of genes involved in cell wall biosynthesis. This unusual combination of effects on recombination and cell wall integrity has also been observed for mutations in genes in the Pkc1p-Mpk1p kinase cascade. Consistent with a role for this novel form of RNA polymerase II in the Pkc1p-Mpk1p signaling pathway, we find that paf1Δ mpk1Δ and paf1Δ pkc1Δ double mutants do not demonstrate an enhanced phenotype relative to the single mutants. Our observation that the Mpk1p kinase is fully active in apaf1Δ strain indicates that the Paf1p-Cdc73p complex may function downstream of the Pkc1p-Mpk1p cascade to regulate the expression of a subset of yeast genes.


Cell | 2011

The Replication Checkpoint Protects Fork Stability by Releasing Transcribed Genes from Nuclear Pores

Rodrigo Bermejo; Thelma Capra; Rachel Jossen; Arianna Colosio; Camilla Frattini; Walter Carotenuto; Andrea Cocito; Ylli Doksani; Hannah L. Klein; Belén Gómez-González; Andrés Aguilera; Yuki Katou; Katsuhiko Shirahige; Marco Foiani

Summary Transcription hinders replication fork progression and stability, and the Mec1/ATR checkpoint protects fork integrity. Examining checkpoint-dependent mechanisms controlling fork stability, we find that fork reversal and dormant origin firing due to checkpoint defects are rescued in checkpoint mutants lacking THO, TREX-2, or inner-basket nucleoporins. Gene gating tethers transcribed genes to the nuclear periphery and is counteracted by checkpoint kinases through phosphorylation of nucleoporins such as Mlp1. Checkpoint mutants fail to detach transcribed genes from nuclear pores, thus generating topological impediments for incoming forks. Releasing this topological complexity by introducing a double-strand break between a fork and a transcribed unit prevents fork collapse. Mlp1 mutants mimicking constitutive checkpoint-dependent phosphorylation also alleviate checkpoint defects. We propose that the checkpoint assists fork progression and stability at transcribed genes by phosphorylating key nucleoporins and counteracting gene gating, thus neutralizing the topological tension generated at nuclear pore gated genes.


Molecular and Biochemical Parasitology | 1989

Genes encoding the major surface glycoprotein in Leishmania are tandemly linked at a single chromosomal locus and are constitutively transcribed.

Linda L. Button; David G. Russell; Hannah L. Klein; Enrique Medina-Acosta; Roger E. Karess; W. Robert McMaster

The major surface glycoprotein of Leishmania, gp63, is encoded by a small multi-gene family of tandemly linked genes which map to a single chromosome. For Leishmania major, there are five 3.1 kilobasepair (kb) direct repeat units which include a 1.8-kb open reading frame and a 1.3-kb intergenic or spacer region. In addition, there is a single gene copy linked as a direct repeat but separated from the tandem array of gp63 genes by about 8 kb. The restriction enzyme map of the repeat unit is highly conserved among the gene copies. The regions which flank the tandemly repeated genes diverge outside of the 3.1-kb repeat unit. Transcription of the gp63 gene locus is constitutive as the 3-kb transcript was present in promastigotes as well as in amastigotes. A minor 6-kb gp63 gene transcript was also detected in Northern blot analysis which could signify the transcription of the genes as a polycistronic or multigene precursor RNA.

Collaboration


Dive into the Hannah L. Klein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrés Aguilera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Peter Chi

National Taiwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Van Komen

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge