Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannah Luehmann is active.

Publication


Featured researches published by Hannah Luehmann.


ACS Nano | 2013

Comparison study of gold nanohexapods, nanorods, and nanocages for photothermal cancer treatment.

Yu-Cai Wang; Kvar Black; Hannah Luehmann; Weiyang Li; Yu Zhang; Xin Cai; Dehui Wan; S. Liu; Max Li; Paul Kim; Zhi-Yuan Li; Lihong V. Wang; Yongjian Liu; Younan Xia

Gold nanohexapods represent a novel class of optically tunable nanostructures consisting of an octahedral core and six arms grown on its vertices. By controlling the length of the arms, their localized surface plasmon resonance peaks could be tuned from the visible to the near-infrared region for deep penetration of light into soft tissues. Herein we compare the in vitro and in vivo capabilities of Au nanohexapods as photothermal transducers for theranostic applications by benchmarking against those of Au nanorods and nanocages. While all these Au nanostructures could absorb and convert near-infrared light into heat, Au nanohexapods exhibited the highest cellular uptake and the lowest cytotoxicity in vitro for both the as-prepared and PEGylated nanostructures. In vivo pharmacokinetic studies showed that the PEGylated Au nanohexapods had significant blood circulation and tumor accumulation in a mouse breast cancer model. Following photothermal treatment, substantial heat was produced in situ and the tumor metabolism was greatly reduced for all these Au nanostructures, as determined with (18)F-flourodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT). Combined together, we can conclude that Au nanohexapods are promising candidates for cancer theranostics in terms of both photothermal destruction and contrast-enhanced diagnosis.


ACS Nano | 2014

Radioactive 198Au-Doped Nanostructures with Different Shapes for In Vivo Analyses of Their Biodistribution, Tumor Uptake, and Intratumoral Distribution

Kvar Black; Yu-Cai Wang; Hannah Luehmann; Xin De Cai; Wenxin Xing; Bo Pang; Yongfeng Zhao; Cathy S. Cutler; Lihong V. Wang; Yongjian Liu; Younan Xia

With Au nanocages as an example, we recently demonstrated that radioactive 198Au could be incorporated into the crystal lattice of Au nanostructures for simple and reliable quantification of their in vivo biodistribution by measuring the γ radiation from 198Au decay and for optical imaging by detecting the Cerenkov radiation. Here we extend the capability of this strategy to synthesize radioactive 198Au nanostructures with a similar size but different shapes and then compare their biodistribution, tumor uptake, and intratumoral distribution using a murine EMT6 breast cancer model. Specifically, we investigated Au nanospheres, nanodisks, nanorods, and cubic nanocages. After PEGylation, an aqueous suspension of the radioactive Au nanostructures was injected into a tumor-bearing mouse intravenously, and their biodistribution was measured from the γ radiation while their tumor uptake was directly imaged using the Cerenkov radiation. Significantly higher tumor uptake was observed for the Au nanospheres and nanodisks relative to the Au nanorods and nanocages at 24 h postinjection. Furthermore, autoradiographic imaging was performed on thin slices of the tumor after excision to resolve the intratumoral distributions of the nanostructures. While both the Au nanospheres and nanodisks were only observed on the surfaces of the tumors, the Au nanorods and nanocages were distributed throughout the tumors.


ACS Nano | 2012

Evaluating the Pharmacokinetics and in vivo Cancer Targeting Capability of Au Nanocages by Positron Emission Tomography Imaging

Yu-Cai Wang; Yongjian Liu; Hannah Luehmann; Xiaohu Xia; Paige K. Brown; Chad Jarreau; Michael J. Welch; Younan Xia

Gold nanocages have recently emerged as a novel class of photothermal transducers and drug carriers for cancer treatment. However, their pharmacokinetics and tumor targeting capability remain largely unexplored due to the lack of an imaging modality for quick and reliable mapping of their distributions in vivo. Herein, Au nanocages were prepared with controlled physicochemical properties and radiolabeled with (64)Cu in high specific activities for in vivo evaluation using positron emission tomography (PET). Our pharmacokinetic studies with femtomolar administrations suggest that 30 nm nanocages had a greatly improved biodistribution profile than 55 nm nanocages, together with higher blood retention and lower hepatic and splenic uptakes. In a murine EMT-6 breast cancer model, the small cages also showed a significantly higher level of tumor uptake and a greater tumor-to-muscle ratio than the large cages. Quantitative PET imaging confirmed rapid accumulation and retention of Au nanocages inside the tumors. The ability to directly and quickly image the distribution of Au nanocages in vivo allows us to further optimize their physicochemical properties for a range of theranostic applications.


Nano Letters | 2013

Radioluminescent gold nanocages with controlled radioactivity for real-time in vivo imaging.

Yu-Cai Wang; Yongjian Liu; Hannah Luehmann; Xiaohu Xia; Dehui Wan; Cathy S. Cutler; Younan Xia

Cerenkov luminescence imaging based on light emission from the decay of radionuclides has recently drawn great interest in molecular imaging. In this paper, we report for the first time the Cerenkov luminescence phenomenon of (198)Au isotope, as well as a facile route to the preparation of radioluminescent Au nanocages without additional radiolabeling or dye conjugation. The specific radioactivity of the Au nanocages could be easily and precisely controlled by varying the concentration of H(198)AuCl(4) precursor used for the galvanic replacement reaction. The direct incorporation of (198)Au atoms into the structure of Au nanocages enabled the ability of accurate analysis and real-time imaging in vivo. Furthermore, under biological conditions the radioactive Au nanocages were shown to emit light with wavelengths in the visible and near-infrared regions, enabling luminescence imaging of the whole mice in vivo, as well as the organs ex vivo. When combined with their favorable scattering and absorption properties in the near-infrared region, the radioactive Au nanocages can serve as a new platform for multimodality imaging and will have a significant impact on both small animal and clinical imaging.


ACS Nano | 2016

64Cu-Doped PdCu@Au Tripods: A Multifunctional Nanomaterial for Positron Emission Tomography and Image-Guided Photothermal Cancer Treatment

Bo Pang; Yongfeng Zhao; Hannah Luehmann; Xuan Yang; Lisa Detering; Meng You; Chao Zhang; Lei Zhang; Zhi-Yuan Li; Qiushi Ren; Yongjian Liu; Younan Xia

This article reports a facile synthesis of radiolabeled PdCu@Au core-shell tripods for use in positron emission tomography (PET) and image-guided photothermal cancer treatment by directly incorporating radioactive (64)Cu atoms into the crystal lattice. The tripod had a unique morphology determined by the PdCu tripod that served as a template for the coating of Au shell, in addition to well-controlled specific activity and physical dimensions. The Au shell provided the nanostructure with strong absorption in the near-infrared region and effectively prevented the Cu and (64)Cu atoms in the core from oxidization and dissolution. When conjugated with D-Ala1-peptide T-amide (DAPTA), the core-shell tripods showed great enhancement in targeting the C-C chemokine receptor 5 (CCR5), a newly identified theranostic target up-regulated in triple negative breast cancer (TNBC). Specifically, the CCR5-targeted tripods with an arm length of about 45 nm showed 2- and 6-fold increase in tumor-to-blood and tumor-to-muscle uptake ratios, respectively, relative to their nontargeted counterpart in an orthotopic mouse 4T1 TNBC model at 24 h postinjection. The targeting specificity was further validated via a competitive receptor blocking study. We also demonstrated the use of these targeted, radioactive tripods for effective photothermal treatment in the 4T1 tumor model as guided by PET imaging. The efficacy of treatment was confirmed by the significant reduction in tumor metabolic activity revealed through the use of (18)F-fluorodeoxyglucose PET/CT imaging. Taken together, we believe that the (64)Cu-doped PdCu@Au tripods could serve as a multifunctional platform for both PET imaging and image-guided photothermal cancer therapy.


Journal of the American Chemical Society | 2012

Hierarchically Assembled Theranostic Nanostructures for siRNA Delivery and Imaging Applications

Ritu Shrestha; Mahmoud Elsabahy; Hannah Luehmann; Sandani Samarajeewa; Stephanie Florez-Malaver; Nam S. Lee; Michael J. Welch; Yongjian Liu; Karen L. Wooley

Dual functional hierarchically assembled nanostructures, with two unique functions of carrying therapeutic cargo electrostatically and maintaining radiolabeled imaging agents covalently within separate component building blocks, have been developed via the supramolecular assembly of several spherical cationic shell cross-linked nanoparticles clustered around a central anionic shell cross-linked cylinder. The shells of the cationic nanoparticles and the hydrophobic core domain of the anionic central cylindrical nanostructure of the assemblies were utilized to complex negatively charged nucleic acids (siRNA) and to undergo radiolabeling, respectively, for potential theranostic applications. The assemblies exhibited exceptional cell transfection and radiolabeling efficiencies, providing an overall advantage over the individual components, which could each facilitate only one or the other of the functions.


The Journal of Nuclear Medicine | 2014

PET/CT Imaging of Chemokine Receptor CCR5 in Vascular Injury Model Using Targeted Nanoparticle

Hannah Luehmann; Eric D. Pressly; Lisa Detering; Cynthia X. Wang; Richard A. Pierce; Pamela K. Woodard; Robert J. Gropler; Craig J. Hawker; Yongjian Liu

Inflammation plays important roles at all stages of atherosclerosis. Chemokine systems have major effects on the initiation and progression of atherosclerosis by controlling the trafficking of inflammatory cells in vivo through interaction with their receptors. Chemokine receptor 5 (CCR5) has been reported to be an active participant in the late stage of atherosclerosis and has the potential as a prognostic biomarker for plaque stability. However, its diagnostic potential has not yet been explored. The purpose of this study was to develop a targeted nanoparticle for sensitive and specific PET/CT imaging of the CCR5 receptor in an apolipoprotein E knock-out (ApoE−/−) mouse vascular injury model. Methods: The d-Ala1-peptide T-amide (DAPTA) peptide was selected as a targeting ligand for the CCR5 receptor. Through controlled conjugation and polymerization, a biocompatible poly(methyl methacrylate)-core/polyethylene glycol-shell amphiphilic comblike nanoparticle was prepared and labeled with 64Cu for CCR5 imaging in the ApoE−/− wire-injury model. Immunohistochemistry, histology, and real-time reverse transcription polymerase chain reaction (RT-PCR) were performed to assess the disease progression and upregulation of CCR5 receptor. Results: The 64Cu-DOTA-DAPTA tracer showed specific PET imaging of CCR5 in the ApoE−/− mice. The targeted 64Cu-DOTA-DAPTA-comb nanoparticles showed extended blood signal and optimized biodistribution. The tracer uptake analysis showed significantly higher accumulations at the injury lesions than those acquired from the sham-operated sites. The competitive PET receptor blocking studies confirmed the CCR5 receptor–specific uptake. The assessment of 64Cu-DOTA-DAPTA-comb in C57BL/6 mice and 64Cu-DOTA-comb in ApoE−/− mice verified low nonspecific nanoparticle uptake. Histology, immunohistochemistry, and RT-PCR analyses verified the upregulation of CCR5 in the progressive atherosclerosis model. Conclusion: This work provides a nanoplatform for sensitive and specific detection of CCR5’s physiologic functions in an animal atherosclerosis model.


ACS Nano | 2016

Gold Nanoclusters Doped with 64Cu for CXCR4 Positron Emission Tomography Imaging of Breast Cancer and Metastasis

Yongfeng Zhao; Lisa Detering; Deborah Sultan; Matthew L. Cooper; Meng You; Sangho Cho; Stephanie Meier; Hannah Luehmann; Guorong Sun; Michael P. Rettig; Farrokh Dehdashti; Karen L. Wooley; John F. DiPersio; Yongjian Liu

As an emerging class of nanomaterial, nanoclusters hold great potential for biomedical applications due to their unique sizes and related properties. Herein, we prepared a (64)Cu doped gold nanocluster ((64)CuAuNC, hydrodynamic size: 4.2 ± 0.5 nm) functionalized with AMD3100 (or Plerixafor) for targeted positron emission tomography (PET) imaging of CXCR4, an up-regulated receptor on primary tumor and lung metastasis in a mouse 4T1 orthotopic breast cancer model. The preparation of targeted (64)CuAuNCs-AMD3100 (4.5 ± 0.4 nm) was done via one-step reaction with controlled conjugation of AMD3100 and specific activity, as well as improved colloid stability. In vivo pharmacokinetic evaluation showed favorable organ distribution and significant renal and fecal clearance within 48 h post injection. The expression of CXCR4 in tumors and metastasis was characterized by immunohistochemistry, Western blot, and reverse transcription polymerase chain reaction analysis. PET imaging with (64)CuAuNCs-AMD3100 demonstrated sensitive and accurate detection of CXCR4 in engineered tumors expressing various levels of the receptor, while competitive receptor blocking studies confirmed targeting specificity of the nanoclusters. In contrast to nontargeted (64)CuAuNCs and (64)Cu-AMD3100 alone, the targeted (64)CuAuNCs-AMD3100 detected up-regulated CXCR4 in early stage tumors and premetastatic niche of lung earlier and with greater sensitivity. Taken together, we believe that (64)CuAuNCs-AMD3100 could serve as a useful platform for early and accurate detection of breast cancer and metastasis providing an essential tool to guide the treatment.


The Journal of Nuclear Medicine | 2013

PET Imaging of Chemokine Receptors in Vascular Injury–Accelerated Atherosclerosis

Yongjian Liu; Richard A. Pierce; Hannah Luehmann; Terry L. Sharp; Michael J. Welch

Atherosclerosis is the pathophysiologic process behind lethal cardiovascular diseases. It is a chronic inflammatory progression. Chemokines can strongly affect the initiation and progression of atherosclerosis by controlling the trafficking of inflammatory cells in vivo through interaction with their receptors. Some chemokine receptors have been reported to play an important role in plaque development and stability. However, the diagnostic potential of chemokine receptors has not yet been explored. The purpose of this study was to develop a positron emitter–radiolabeled probe to image the upregulation of chemokine receptor in a wire-injury-accelerated apolipoprotein E knockout (ApoE−/−) mouse model of atherosclerosis. Methods: A viral macrophage inflammatory protein II (vMIP-II) was used to image the upregulation of multiple chemokine receptors through conjugation with DOTA for 64Cu radiolabeling and PET. Imaging studies were performed at 2 and 4 wk after injury in both wire-injured ApoE−/− and wild-type C57BL/6 mice. Competitive PET blocking studies with nonradiolabeled vMIP-II were performed to confirm the imaging specificity. Specific PET blocking with individual chemokine receptor antagonists was also performed to verify the upregulation of a particular chemokine receptor. In contrast, 18F-FDG PET imaging was performed in both models to evaluate tracer uptake. Immunohistochemistry on the injury and sham tissues was performed to assess the upregulation of chemokine receptors. Results: 15O-CO PET showed decreased blood volume in the femoral artery after the injury. 64Cu-DOTA-vMIP-II exhibited fast in vivo pharmacokinetics with major renal clearance. PET images showed specific accumulation around the injury site, with consistent expression during the study period. Quantitative analysis of tracer uptake at the injury lesion in the ApoE−/− model showed a 3-fold increase over the sham-operated site and the sites in the injured wild-type mouse. 18F-FDG PET showed significantly less tracer accumulation than 64Cu-DOTA-vMIP-II, with no difference observed between injury and sham sites. PET blocking studies identified chemokine receptor–mediated 64Cu-DOTA-vMIP-II uptake and verified the presence of 8 chemokine receptors, and this finding was confirmed by immunohistochemistry. Conclusion: 64Cu-DOTA-vMIP-II was proven a sensitive and useful PET imaging probe for the detection of 8 up-regulated chemokine receptors in a model of injury-accelerated atherosclerosis.


The Journal of Nuclear Medicine | 2016

PET/CT Imaging of Chemokine Receptors in Inflammatory Atherosclerosis Using Targeted Nanoparticles

Hannah Luehmann; Lisa Detering; Brett P. Fors; Eric D. Pressly; Pamela K. Woodard; Gwendalyn J. Randolph; Robert J. Gropler; Craig J. Hawker; Yongjian Liu

Atherosclerosis is inherently an inflammatory process that is strongly affected by the chemokine–chemokine receptor axes regulating the trafficking of inflammatory cells at all stages of the disease. Of the chemokine receptor family, some specifically upregulated on macrophages play a critical role in plaque development and may have the potential to track plaque progression. However, the diagnostic potential of these chemokine receptors has not been fully realized. On the basis of our previous work using a broad-spectrum peptide antagonist imaging 8 chemokine receptors together, the purpose of this study was to develop a targeted nanoparticle for sensitive and specific detection of these chemokine receptors in both a mouse vascular injury model and a spontaneously developed mouse atherosclerosis model. Methods: The viral macrophage inflammatory protein-II (vMIP-II) was conjugated to a biocompatible poly(methyl methacrylate)-core/polyethylene glycol-shell amphiphilic comblike nanoparticle through controlled conjugation and polymerization before radiolabeling with 64Cu for PET imaging in an apolipoprotein E–deficient (ApoE−/−) mouse vascular injury model and a spontaneous ApoE−/− mouse atherosclerosis model. Histology, immunohistochemistry, and real-time reverse transcription polymerase chain reaction were performed to assess the plaque progression and upregulation of chemokine receptors. Results: The chemokine receptor–targeted 64Cu-vMIP-II-comb showed extended blood retention and improved biodistribution. PET imaging showed specific tracer accumulation at plaques in ApoE−/− mice, confirmed by competitive receptor blocking studies and assessment in wild-type mice. Histopathologic characterization showed the progression of plaque including size and macrophage population, corresponding to the elevated concentration of chemokine receptors and more importantly increased PET signals. Conclusion: This work provides a useful nanoplatform for sensitive and specific detection of chemokine receptors to assess plaque progression in mouse atherosclerosis models.

Collaboration


Dive into the Hannah Luehmann's collaboration.

Top Co-Authors

Avatar

Yongjian Liu

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Lisa Detering

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Deborah Sultan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Yongfeng Zhao

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Younan Xia

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Robert J. Gropler

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pamela K. Woodard

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Richard Laforest

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge