Hannah S. Seidel
University of Wisconsin-Madison
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hannah S. Seidel.
Nature Genetics | 2006
Douglas M. Ruderfer; Stephen C. Pratt; Hannah S. Seidel
The budding yeast Saccharomyces cerevisiae has been used by humans for millennia to make wine, beer and bread. More recently, it became a key model organism for studies of eukaryotic biology and for genomic analysis. However, relatively little is known about the natural lifestyle and population genetics of yeast. One major question is whether genetically diverse yeast strains mate and recombine in the wild. We developed a method to infer the evolutionary history of a species from genome sequences of multiple individuals and applied it to whole-genome sequence data from three strains of Saccharomyces cerevisiae and the sister species Saccharomyces paradoxus. We observed a pattern of sequence variation among yeast strains in which ancestral recombination events lead to a mosaic of segments with shared genealogy. Based on sequence divergence and the inferred median size of shared segments (∼2,000 bp), we estimated that although any two strains have undergone approximately 16 million cell divisions since their last common ancestor, only 314 outcrossing events have occurred during this time (roughly one every 50,000 divisions). Local correlations in polymorphism rates indicate that linkage disequilibrium in yeast should extend over kilobases. Our results provide the initial foundation for population studies of association between genotype and phenotype in S. cerevisiae.
Science | 2008
Hannah S. Seidel; Matthew V. Rockman
Natural selection is expected to eliminate genetic incompatibilities from interbreeding populations. We have discovered a globally distributed incompatibility in the primarily selfing species Caenorhabditis elegans that has been maintained despite its negative consequences for fitness. Embryos homozygous for a naturally occurring deletion of the zygotically acting gene zeel-1 arrest if their sperm parent carries an incompatible allele of a second, paternal-effect locus, peel-1. The two interacting loci are tightly linked, with incompatible alleles occurring in linkage disequilibrium in two common haplotypes. These haplotypes exhibit elevated sequence divergence, and population genetic analyses of this region indicate that natural selection is preserving both haplotypes in the population. Our data suggest that long-term maintenance of a balanced polymorphism has permitted the incompatibility to persist despite gene flow across the rest of the genome.
PLOS Biology | 2011
Hannah S. Seidel; Michael Ailion; Jialing Li; Alexander van Oudenaarden; Matthew V. Rockman
A sperm-delivered toxin and an embryo-expressed antidote form a co-adapted gene complex in C. elegans that promotes its own transmission to the detriment of organisms carrying it.
PLOS ONE | 2011
Hannah S. Seidel; Judith Kimble
Many animals alter their reproductive strategies in response to environmental stress. Here we have investigated how L4 hermaphrodites of Caenorhabditis elegans respond to starvation. To induce starvation, we removed food at 2 h intervals from very early- to very late-stage L4 animals. The starved L4s molted into adulthood, initiated oogenesis, and began producing embryos; however, all three processes were severely delayed, and embryo viability was reduced. Most animals died via ‘bagging,’ because egg-laying was inhibited, and embryos hatched in utero, consuming their parent hermaphrodites from within. Some animals, however, avoided bagging and survived long term. Long-term survival did not rely on embryonic arrest but instead upon the failure of some animals to produce viable progeny during starvation. Regardless of the bagging fate, starved animals showed two major changes in germline morphology: All oogenic germlines were dramatically reduced in size, and these germlines formed only a single oocyte at a time, separated from the remainder of the germline by a tight constriction. Both changes in germline morphology were reversible: Upon re-feeding, the shrunken germlines regenerated, and multiple oocytes formed concurrently. The capacity for germline regeneration upon re-feeding was not limited to the small subset of animals that normally survive starvation: When bagging was prevented ectopically by par-2 RNAi, virtually all germlines still regenerated. In addition, germline shrinkage strongly correlated with oogenesis, suggesting that during starvation, germline shrinkage may provide material for oocyte production. Finally, germline shrinkage and regeneration did not depend upon crowding. Our study confirms previous findings that starvation uncouples germ cell proliferation from germline stem cell maintenance. Our study also suggests that when nutrients are limited, hermaphrodites scavenge material from their germlines to reproduce. We discuss our findings in light of the recently proposed state of dormancy, termed Adult Reproductive Diapause.
G3: Genes, Genomes, Genetics | 2015
Erik C. Andersen; Tyler C. Shimko; Jonathan R. Crissman; Rajarshi Ghosh; Joshua S. Bloom; Hannah S. Seidel; Justin P. Gerke
The genetic variants underlying complex traits are often elusive even in powerful model organisms such as Caenorhabditis elegans with controlled genetic backgrounds and environmental conditions. Two major contributing factors are: (1) the lack of statistical power from measuring the phenotypes of small numbers of individuals, and (2) the use of phenotyping platforms that do not scale to hundreds of individuals and are prone to noisy measurements. Here, we generated a new resource of 359 recombinant inbred strains that augments the existing C. elegans N2xCB4856 recombinant inbred advanced intercross line population. This new strain collection removes variation in the neuropeptide receptor gene npr-1, known to have large physiological and behavioral effects on C. elegans and mitigates the hybrid strain incompatibility caused by zeel-1 and peel-1, allowing for identification of quantitative trait loci that otherwise would have been masked by those effects. Additionally, we optimized highly scalable and accurate high-throughput assays of fecundity and body size using the COPAS BIOSORT large particle nematode sorter. Using these assays, we identified quantitative trait loci involved in fecundity and growth under normal growth conditions and after exposure to the herbicide paraquat, including independent genetic loci that regulate different stages of larval growth. Our results offer a powerful platform for the discovery of the genetic variants that control differences in responses to drugs, other aqueous compounds, bacterial foods, and pathogenic stresses.
eLife | 2015
Hannah S. Seidel; Judith Kimble
Many types of adult stem cells exist in a state of cell-cycle quiescence, yet it has remained unclear whether quiescence plays a role in maintaining the stem cell fate. Here we establish the adult germline of Caenorhabditis elegans as a model for facultative stem cell quiescence. We find that mitotically dividing germ cells—including germline stem cells—become quiescent in the absence of food. This quiescence is characterized by a slowing of S phase, a block to M-phase entry, and the ability to re-enter M phase rapidly in response to re-feeding. Further, we demonstrate that cell-cycle quiescence alters the genetic requirements for stem cell maintenance: The signaling pathway required for stem cell maintenance under fed conditions—GLP-1/Notch signaling—becomes dispensable under conditions of quiescence. Thus, cell-cycle quiescence can itself maintain stem cells, independent of the signaling pathway otherwise essential for such maintenance. DOI: http://dx.doi.org/10.7554/eLife.10832.001
eLife | 2015
Judith Kimble; William M. Bement; Qiang Chang; Benjamin L. Cox; Norman R. Drinkwater; Richard L. Gourse; Aaron A. Hoskins; Anna Huttenlocher; Pamela K. Kreeger; Paul F. Lambert; Marsha R. Mailick; Richard L. Moss; Kate M. O'Connor-Giles; Avtar Roopra; Krishanu Saha; Hannah S. Seidel
A cross-campus, cross-career stage and cross-disciplinary series of discussions at a large public university has produced a series of recommendations for addressing the problems confronting the biomedical research community in the US. DOI: http://dx.doi.org/10.7554/eLife.09305.001
PLOS Genetics | 2017
Stefan Zdraljevic; Christine Strand; Hannah S. Seidel; Daniel E. Cook; John G. Doench; Erik C. Andersen
Many chemotherapeutic drugs are differentially effective from one patient to the next. Understanding the causes of this variability is a critical step towards the development of personalized treatments and improvements to existing medications. Here, we investigate sensitivity to a group of anti-neoplastic drugs that target topoisomerase II using the model organism Caenorhabditis elegans. We show that wild strains of C. elegans vary in their sensitivity to these drugs, and we use an unbiased genetic approach to demonstrate that this natural variation is explained by a methionine-to-glutamine substitution in topoisomerase II (TOP-2). The presence of a non-polar methionine at this residue increases hydrophobic interactions between TOP-2 and its poison etoposide, as compared to a polar glutamine. We hypothesize that this stabilizing interaction results in increased genomic instability in strains that contain a methionine residue. The residue affected by this substitution is conserved from yeast to humans and is one of the few differences between the two human topoisomerase II isoforms (methionine in hTOPIIα and glutamine in hTOPIIβ). We go on to show that this amino acid difference between the two human topoisomerase isoforms influences cytotoxicity of topoisomerase II poisons in human cell lines. These results explain why hTOPIIα and hTOPIIβ are differentially affected by various poisons and demonstrate the utility of C. elegans in understanding the genetics of drug responses.
bioRxiv | 2017
Stefan Zdraljevic; Christine Strand; Hannah S. Seidel; Daniel E. Cook; John G. Doench; Erik C. Andersen
Many medications, including chemotherapeutics, are differentially effective from one patient to the next. Understanding the causes of these population-wide differences is a critical step towards the development of personalized treatments and improvements to existing medications. Here, we investigate natural differences in sensitivity to anti-neoplastic drugs that target topoisomerase II, using the model organism Caenorhabditis elegans. We show that wild isolates of C. elegans vary in their sensitivity to these drugs, and we use an unbiased statistical and molecular genetics approach to demonstrate that this variation is explained by a methionine-to-glutamine substitution in topoisomerase II (TOP-2). The presence of a non-polar methionine at this residue increases hydrophobic interactions between TOP-2 and the poison etoposide, as compared to a polar glutamine. We hypothesize that this stabilizing interaction results in increased genomic instability in strains that contain a methionine residue. The residue affected by this substitution is conserved from yeast to humans and is one of the few differences between the two human topoisomerase II isoforms (methionine in hTOPIIα and glutamine in hTOPIIβ). We go on to show that this substitution influences binding and cytotoxicity of etoposide and two additional topoisomerase II poisons in human cell lines. These results explain why hTOPIIα and hTOPIIβ are differentially affected by various poisons and demonstrate the utility of C. elegans in understanding the genetics of drug responses.
bioRxiv | 2018
Hannah S. Seidel; Tilmira A. Smith; Jessica K. Evans; Jarred Q. Stamper; Thomas G. Mast; Judith Kimble
Knowing how stem cells and their progeny are positioned within their tissues is essential for understanding their regulation. One paradigm for stem cell regulation is the C. elegans germline, which is maintained by a pool of germline stem cells in the distal gonad, in a region known as the ‘progenitor zone’. The C. elegans germline is widely used as a stem cell model, but the cellular architecture of the progenitor zone has been unclear. Here we characterize this architecture by creating virtual 3D models of the progenitor zone in both sexes. We show that the progenitor zone in adult hermaphrodites is essentially a folded epithelium. The progenitor zone in males is not folded. Analysis of germ cell division shows that daughter cells are born side-by-side along the surface of the epithelium. Analysis of a key regulator driving differentiation, GLD-1, shows that germ cells in hermaphrodites differentiate along the path of the folded epithelium, with previously described “steps” in GLD-1 expression corresponding to germline folds. Our study provides a three-dimensional view of how C. elegans germ cells progress from stem cell to overt differentiation, with critical implications for regulators driving this transition.