Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannah Webber is active.

Publication


Featured researches published by Hannah Webber.


Cancer Cell | 2012

The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma.

Teeara Berry; William Luther; Namrata Bhatnagar; Yann Jamin; Evon Poon; Takaomi Sanda; De-Sheng Pei; Bandana Sharma; Winston R. Vetharoy; Albert Hallsworth; Zai Ahmad; Karen Barker; Lisa A. Moreau; Hannah Webber; Wenchao Wang; Qingsong Liu; Antonio R. Perez-Atayde; Scott J. Rodig; Nai-Kong Cheung; Florence I. Raynaud; Bengt Hallberg; Simon P. Robinson; Nathanael S. Gray; Andrew D.J. Pearson; Suzanne A. Eccles; Louis Chesler; Rani E. George

The ALK(F1174L) mutation is associated with intrinsic and acquired resistance to crizotinib and cosegregates with MYCN in neuroblastoma. In this study, we generated a mouse model overexpressing ALK(F1174L) in the neural crest. Compared to ALK(F1174L) and MYCN alone, co-expression of these two oncogenes led to the development of neuroblastomas with earlier onset, higher penetrance, and enhanced lethality. ALK(F1174L)/MYCN tumors exhibited increased MYCN dosage due to ALK(F1174L)-induced activation of the PI3K/AKT/mTOR and MAPK pathways, coupled with suppression of MYCN pro-apoptotic effects. Combined treatment with the ATP-competitive mTOR inhibitor Torin2 overcame the resistance of ALK(F1174L)/MYCN tumors to crizotinib. Our findings demonstrate a pathogenic role for ALK(F1174L) in neuroblastomas overexpressing MYCN and suggest a strategy for improving targeted therapy for ALK-positive neuroblastoma.


Science Translational Medicine | 2015

Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma

Daniel Carter; Jayne Murray; Belamy B. Cheung; Laura Gamble; Jessica Koach; Joanna Tsang; Selina Sutton; Heyam Kalla; Sarah Syed; Andrew J. Gifford; Natalia Issaeva; Asel Biktasova; Bernard Atmadibrata; Yuting Sun; Nicolas Sokolowski; Dora Ling; Patrick Y. Kim; Hannah Webber; Ashleigh Clark; Michelle Ruhle; Bing Liu; André Oberthuer; Matthias Fischer; Jennifer A. Byrne; Federica Saletta; Le M. Thwe; Andrei Purmal; Gary Haderski; Catherine Burkhart; Frank Speleman

Histone chaperone FACT acts in a positive feedback loop with MYCN and is a therapeutic target in neuroblastoma. Uncovering the FACTs in neuroblastoma Neuroblastoma is a common pediatric cancer of the nervous system. It is often difficult to treat, and tumors with amplifications of the MYC oncogene are particularly aggressive. Carter et al. have identified a histone chaperone called FACT as a mediator of MYC signaling in neuroblastoma and demonstrated its role in a feedback loop that allows tumor cells to maintain a high expression of both MYC and FACT. The authors then used curaxins, which are drugs that inhibit FACT, to break the vicious cycle. They demonstrated that curaxins work in synergy with standard genotoxic chemotherapy to kill cancer cells and treat neuroblastoma in mouse models. Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. We used a MYC target gene signature that predicts poor neuroblastoma prognosis to identify the histone chaperone FACT (facilitates chromatin transcription) as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small-molecule curaxin compound CBL0137 markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with standard chemotherapy by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN-amplified neuroblastoma cells and suggesting a treatment strategy for MYCN-driven neuroblastoma.


Cancer Research | 2015

Neuroblastoma arginase activity creates an immunosuppressive microenvironment that impairs autologous and engineered immunity

Francis Mussai; Sharon A. Egan; Stuart Hunter; Hannah Webber; Jonathan Fisher; Rachel Wheat; Carmel McConville; Yordan Sbirkov; Kate Wheeler; Gavin M. Bendle; Kevin Petrie; John Anderson; Louis Chesler; Carmela De Santo

Neuroblastoma is the most common extracranial solid tumor of childhood, and survival remains poor for patients with advanced disease. Novel immune therapies are currently in development, but clinical outcomes have not matched preclinical results. Here, we describe key mechanisms in which neuroblastoma inhibits the immune response. We show that murine and human neuroblastoma tumor cells suppress T-cell proliferation through increased arginase activity. Arginase II is the predominant isoform expressed and creates an arginine-deplete local and systemic microenvironment. Neuroblastoma arginase activity results in inhibition of myeloid cell activation and suppression of bone marrow CD34(+) progenitor proliferation. Finally, we demonstrate that the arginase activity of neuroblastoma impairs NY-ESO-1-specific T-cell receptor and GD2-specific chimeric antigen receptor-engineered T-cell proliferation and cytotoxicity. High arginase II expression correlates with poor survival for patients with neuroblastoma. The results support the hypothesis that neuroblastoma creates an arginase-dependent immunosuppressive microenvironment in both the tumor and blood that leads to impaired immunosurveillance and suboptimal efficacy of immunotherapeutic approaches.


PLOS ONE | 2011

miRNA Expression Profiling of the Murine TH-MYCN Neuroblastoma Model Reveals Similarities with Human Tumors and Identifies Novel Candidate MiRNAs

Marta Terrile; Kenneth Bryan; Lynsey Vaughan; Albert Hallsworth; Hannah Webber; Louis Chesler; Raymond L. Stallings

Background MicroRNAs are small molecules which regulate gene expression post-transcriptionally and aberrant expression of several miRNAs is associated with neuroblastoma, a childhood cancer arising from precursor cells of the sympathetic nervous system. Amplification of the MYCN transcription factor characterizes the most clinically aggressive subtype of this disease, and although alteration of p53 signaling is not commonly found in primary tumors, deregulation of proteins involved in this pathway frequently arise in recurrent disease after pharmacological treatment. TH-MYCN is a well-characterized transgenic model of MYCN-driven neuroblastoma which recapitulates many clinicopathologic features of the human disease. Here, we evaluate the dysregulation of miRNAs in tumors from TH-MYCN mice that are either wild-type (TH-MYCN) or deficient (TH-MYCN/p53ERTAM) for the p53 tumor suppressor gene. Principal Findings We analyzed the expression of 591 miRNAs in control (adrenal) and neuroblastoma tumor tissues derived from either TH-MYCN or TH-MYCN/p53ERTAM mice, respectively wild-type or deficient in p53. Comparing miRNA expression in tumor and control samples, we identified 159 differentially expressed miRNAs. Using data previously obtained from human neuroblastoma samples, we performed a comparison of miRNA expression between murine and human tumors to assess the concordance between murine and human expression data. Notably, the miR-17-5p-92 oncogenic polycistronic cluster, which is over-expressed in human MYCN amplified tumors, was over-expressed in mouse tumors. Moreover, analyzing miRNAs expression in a mouse model (TH-MYCN/p53ERTAM) possessing a transgenic p53 allele that drives the expression of an inactive protein, we identified miR-125b-3p and miR-676 as directly or indirectly regulated by the level of functional p53. Significance Our study represents the first miRNA profiling of an important mouse model of neuroblastoma. Similarities and differences in miRNAs expression between human and murine neuroblastoma were identified, providing important insight into the efficacy of this mouse model for assessing miRNA involvement in neuroblastoma and their potential effectiveness as therapeutic targets.


Radiology | 2013

Evaluation of Clinically Translatable MR Imaging Biomarkers of Therapeutic Response in the TH-MYCN Transgenic Mouse Model of Neuroblastoma

Yann Jamin; Elizabeth R. Tucker; Evon Poon; Sergey Popov; Lynsey Vaughan; Jessica K.R. Boult; Hannah Webber; Albert Hallsworth; Lauren C.J. Baker; Chris Jones; Dow-Mu Koh; Andrew D.J. Pearson; Louis Chesler; Simon P. Robinson

PURPOSE To evaluate noninvasive and clinically translatable magnetic resonance (MR) imaging biomarkers of therapeutic response in the TH-MYCN transgenic mouse model of aggressive, MYCN-amplified neuroblastoma. MATERIALS AND METHODS All experiments were performed in accordance with the local ethical review panel and the UK Home Office Animals Scientific Procedures Act 1986 and with the UK National Cancer Research Institute guidelines for the welfare of animals in cancer research. Multiparametric MR imaging was performed of abdominal tumors found in the TH-MYCN model. T2-weighted MR imaging, quantitation of native relaxation times T1 and T2, the relaxation rate R2*, and dynamic contrast-enhanced MR imaging were used to monitor tumor response to cyclophosphamide (25 mg/kg), the vascular disrupting agent ZD6126 (200 mg/kg), or the antiangiogenic agent cediranib (6 mg/kg, daily). Any significant changes in the measured parameters, and in the magnitude of the changes after treatment between treated and control cohorts, were identified by using Student two-tailed paired and unpaired t test, respectively, with a 5% level of significance. RESULTS Treatment with cyclophosphamide or cediranib induced a 54% or 20% reduction in tumor volume at 48 hours, respectively (P < .005 and P < .005, respectively; P < .005 and P < .005 versus control, respectively). Treatment with ZD6126 induced a 45% reduction in mean tumor volume 24 hours after treatment (P < .005; P < .005 versus control). The antitumor activity of cyclophosphamide, cediranib, and ZD6126 was consistently associated with a decrease in tumor T1 (P < .005, P < .005, and P < .005, respectively; P < .005, P < .005, and P < .005 versus control, respectively) and with a correlation between therapy-induced changes in native T1 and changes in tumor volume (r = 0.56; P < .005). Tumor response to cediranib was also associated with a decrease in the dynamic contrast-enhanced MR imaging-derived volume transfer constant (P = .07; P < .05 versus control) and enhancing fraction (P < .05; P < .01 versus control), and an increase in R2* (P < .005; P < .05 versus control). CONCLUSION The T1 relaxation time is a robust noninvasive imaging biomarker of response to therapy in tumors in TH-MYCN mice, which emulate high-risk neuroblastoma in children. T1 measurements can be readily implemented on clinical MR systems and should be investigated in translational clinical trials of new targeted therapies for pediatric neuroblastoma. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.12120128/-/DC1.


Clinical Cancer Research | 2016

Polyamine antagonist therapies inhibit neuroblastoma initiation and progression

Nicholas F. Evageliou; Michelle Haber; Annette Vu; Theodore W. Laetsch; Jayne Murray; Laura Gamble; Ngan Ching Cheng; Kangning Liu; Megan Reese; Kelly A. Corrigan; David S. Ziegler; Hannah Webber; Candice S. Hayes; Bruce R. Pawel; Glenn M. Marshall; Huaqing Zhao; Susan K. Gilmour; Murray D. Norris; Michael D. Hogarty

Purpose: Deregulated MYC drives oncogenesis in many tissues yet direct pharmacologic inhibition has proven difficult. MYC coordinately regulates polyamine homeostasis as these essential cations support MYC functions, and drugs that antagonize polyamine sufficiency have synthetic-lethal interactions with MYC. Neuroblastoma is a lethal tumor in which the MYC homologue MYCN, and ODC1, the rate-limiting enzyme in polyamine synthesis, are frequently deregulated so we tested optimized polyamine depletion regimens for activity against neuroblastoma. Experimental Design: We used complementary transgenic and xenograft-bearing neuroblastoma models to assess polyamine antagonists. We investigated difluoromethylornithine (DFMO; an inhibitor of Odc, the rate-limiting enzyme in polyamine synthesis), SAM486 (an inhibitor of Amd1, the second rate-limiting enzyme), and celecoxib (an inducer of Sat1 and polyamine catabolism) in both the preemptive setting and in the treatment of established tumors. In vitro assays were performed to identify mechanisms of activity. Results: An optimized polyamine antagonist regimen using DFMO and SAM486 to inhibit both rate-limiting enzymes in polyamine synthesis potently blocked neuroblastoma initiation in transgenic mice, underscoring the requirement for polyamines in MYC-driven oncogenesis. Furthermore, the combination of DFMO with celecoxib was found to be highly active, alone, and combined with numerous chemotherapy regimens, in regressing established tumors in both models, including tumors harboring highest risk genetic lesions such as MYCN amplification, ALK mutation, and TP53 mutation with multidrug resistance. Conclusions: Given the broad preclinical activity demonstrated by polyamine antagonist regimens across diverse in vivo models, clinical investigation of such approaches in neuroblastoma and potentially other MYC-driven tumors is warranted. Clin Cancer Res; 22(17); 4391–404. ©2016 AACR.


Cancer Research | 2016

p53 Loss in MYC-Driven Neuroblastoma Leads to Metabolic Adaptations Supporting Radioresistance

Orli Yogev; Karen Barker; Arti Sikka; Gilberto S. Almeida; Albert Hallsworth; Laura Smith; Yann Jamin; Ruth Ruddle; Alexander Koers; Hannah Webber; Florence I. Raynaud; Sergey Popov; Chris Jones; Kevin Petrie; Simon P. Robinson; Hector C. Keun; Louis Chesler

Neuroblastoma is the most common childhood extracranial solid tumor. In high-risk cases, many of which are characterized by amplification of MYCN, outcome remains poor. Mutations in the p53 (TP53) tumor suppressor are rare at diagnosis, but evidence suggests that p53 function is often impaired in relapsed, treatment-resistant disease. To address the role of p53 loss of function in the development and pathogenesis of high-risk neuroblastoma, we generated a MYCN-driven genetically engineered mouse model in which the tamoxifen-inducible p53ER(TAM) fusion protein was expressed from a knock-in allele (Th-MYCN/Trp53(KI)). We observed no significant differences in tumor-free survival between Th-MYCN mice heterozygous for Trp53(KI) (n = 188) and Th-MYCN mice with wild-type p53 (n = 101). Conversely, the survival of Th-MYCN/Trp53(KI/KI) mice lacking functional p53 (n = 60) was greatly reduced. We found that Th-MYCN/Trp53(KI/KI) tumors were resistant to ionizing radiation (IR), as expected. However, restoration of functional p53ER(TAM) reinstated sensitivity to IR in only 50% of Th-MYCN/Trp53(KI/KI) tumors, indicating the acquisition of additional resistance mechanisms. Gene expression and metabolic analyses indicated that the principal acquired mechanism of resistance to IR in the absence of functional p53 was metabolic adaptation in response to chronic oxidative stress. Tumors exhibited increased antioxidant metabolites and upregulation of glutathione S-transferase pathway genes, including Gstp1 and Gstz1, which are associated with poor outcome in human neuroblastoma. Accordingly, glutathione depletion by buthionine sulfoximine together with restoration of p53 activity resensitized tumors to IR. Our findings highlight the complex pathways operating in relapsed neuroblastomas and the need for combination therapies that target the diverse resistance mechanisms at play. Cancer Res; 76(10); 3025-35. ©2016 AACR.


British Journal of Cancer | 2017

Pre-clinical imaging of transgenic mouse models of neuroblastoma using a dedicated 3-element solenoid coil on a clinical 3T platform

Gilberto S. Almeida; Rafal Panek; Albert Hallsworth; Hannah Webber; Efthymia Papaevangelou; Jessica K.R. Boult; Yann Jamin; Louis Chesler; Simon P. Robinson

Background:The use of clinical MRI scanners to conduct pre-clinical research facilitates comparisons with clinical studies. Here the utility and sensitivity of anatomical and functional MRI data/biomarkers acquired from transgenic mouse models of neuroblastoma using a dedicated radiofrequency (RF) coil on a clinical 3T scanner was evaluated.Methods:Multiparametric MRI of transgenic mice bearing abdominal neuroblastomas was performed at 3T, and data cross-referenced to that acquired from the same mice on a pre-clinical 7T MRI system. T2-weighted imaging, quantitation of the native longitudinal relaxation time (T1) and the transverse relaxation rate (R2*), and dynamic contrast-enhanced (DCE)-MRI, was used to assess tumour volume, phenotype and response to cyclophosphamide or cabozantinib.Results:Excellent T2-weighted image contrast enabled clear tumour delineation at 3T. Significant correlations of tumour volume (R=0.98, P<0.0001) and R2* (R=0.87, P<0.002) measured at 3 and 7T were established. Mice with neuroblastomas harbouring the anaplastic lymphoma kinase mutation exhibited a significantly slower R2* (P<0.001), consistent with impaired tumour perfusion. DCE-MRI was performed simultaneously on three transgenic mice, yielding estimates of Ktrans for each tumour (median Ktrans values of 0.202, 0.168 and 0.114 min−1). Cyclophosphamide elicited a significant reduction in both tumour burden (P<0.002) and native T1 (P<0.01), whereas cabozantinib induced significant (P<0.01) tumour growth delay.Conclusions:Simultaneous multiparametric MRI of multiple tumour-bearing animals using this coil arrangement at 3T can provide high efficiency/throughput for both phenotypic characterisation and evaluation of novel therapeutics, and facilitate the introduction of functional MRI biomarkers into aligned imaging-embedded clinical trials.


Molecular Cancer Research | 2015

Abstract PR09: MYCN and is a therapeutic target in neuroblastoma

Daniel Carter; Jayne Murray; Belamy B. Cheung; Heyam Kalla; Laura Gamble; Joanna Tsang; Selina Sutton; Jessica Koach; Sarah Syed; Andrew J. Gifford; Natalia Issaeva; Asel Biktasova; Bernard Atmadibrata; Yuting Sun; Nicolas Sokolowski; Dora Ling; Patrick Y. Kim; Hannah Webber; Ashleigh Clark; Michelle Ruhle; Bing Liu; André Oberthuer; Matthias Fischer; Jennifer A. Byrne; Federica Saletta; Andrei Purmal; David S. Ziegler; Tao Liu; Katerina V. Gurova; Andrei V. Gudkov

Neuroblastoma is a childhood cancer of the sympathetic nervous system. Approximately 20% of patients present with an aggressive metastatic disease characterized by amplification of the MYCN locus. However, an additional 30% of patients suffer from an equally aggressive disease, yet there are no unified genetic markers available. To identify potential biomarkers of poor prognosis in neuroblastoma, we conducted unsupervised hierarchical clustering on 649 primary neuroblastoma tumors based on a 51 gene MYC core target signature. This demonstrated strong activation within the MYCN amplified cohort as expected, but surprisingly there was a large subset of MYCN non-amplified patients that exhibited high MYC signaling. High expression of this MYC signature proved to be strongly predictive of poor overall survival, in both the full cohort (Hazard ratio (HR): 47.6, p= 2.7x10-35, n=649) and in MYCN non-amplified patients (HR=32.8, p=1.3x10-13, n=554), suggesting that neuroblastoma can be driven by MYC signaling in the absence of MYCN amplification. To evaluate potential therapeutic targets within this MYC signature, we conducted cox regression analysis on the 51 individual members and identified that SPT16 was a particularly potent predictor of poor outcome in these 649 neuroblastoma patients (HR: 7.2, p=2.7x10-17). SPT16 is a subunit of the FACT histone chaperone complex, which together with its heterodimer partner SSRP1, has previously been shown to function in dynamic regulation of chromatin to drive transcription, DNA replication and DNA repair. Similar to SPT16, high SSRP1 expression was a strong predictor of poor prognosis in 649 neuroblastoma patients (HR: 12.5, p=5.812x10-26) implicating FACT as a mediator of MYC driven neuroblastoma. Next we investigated the biological relationship between FACT and MYCN in neuroblastoma. siRNA experiments showed that FACT and MYCN participate in a positive feedback transcriptional loop that is essential for maintaining mutual high expression. Immunohistochemistry in sympathetic ganglia of pre-tumor TH-MYCN mouse model of neuroblastoma identified that FACT was highly expressed at tumor initiation and chemical inhibition of FACT by CBL0137 markedly reduced tumor initiation and subsequent tumorigenesis in vivo. Next we tested CBL0137 against established neuroblastoma in TH-MYCN mice. CBL0137 was highly cytotoxic to tumors either as a single agent or by synergistically promoting clinically used chemotherapeutics. This was accompanied by marked MYCN depletion and prolonged tumor regression in a majority of recipient mice. Pulsed-field electrophoresis showed that CBL0137 impaired FACT dependent DNA damage repair in the presence of genotoxic chemotherapy, thus creating a synthetic lethal environment in MYCN-amplified neuroblastoma cells. Together our data define FACT as a mediator of neuroblastoma tumorigenesis and MYCN-related treatment target. Given the current poor survival rates of children with high-risk neuroblastoma, our findings provide support for the clinical development of CBL0137 as a novel treatment approach for this refractory malignancy. Citation Format: Daniel R. Carter, Jayne Murray, Belamy B. Cheung, Heyam Kalla, Laura Gamble, Joanna Tsang, Selina Sutton, Jessica Koach, Sarah Syed, Andrew Gifford, Natalia Issaeva, Asel Biktasova, Bernard Atmadibrata, Yuting Sun, Nicolas Sokolowski, Dora Ling, Patrick Y. Kim, Hannah Webber, Ashleigh Clark, Michelle Ruhle, Bing Liu, Andre Oberthuer, Matthias Fischer, Jennifer Byrne, Federica Saletta, Andrei Purmal, David Ziegler, Tao Liu, Katerina V. Gurova, Andrei V. Gudkov, Murray D. Norris, Michelle Haber, Glenn M. Marshall. MYCN and is a therapeutic target in neuroblastoma. [abstract]. In: Proceedings of the AACR Special Conference on Myc: From Biology to Therapy; Jan 7-10, 2015; La Jolla, CA. Philadelphia (PA): AACR; Mol Cancer Res 2015;13(10 Suppl):Abstract nr PR09.


Cancer Research | 2015

Abstract 491: Tumor response to cabozantinib in the TH-MYCN GEM model of neuroblastoma

Gilberto S. Almeida; Philippa King; Yann Jamin; Albert Hallsworth; Hannah Webber; Sergey Popov; Andrew D.J. Pearson; Louis Chesler; Simon P. Robinson

Neuroblastoma (NB) is the most common extra-cranial solid tumor in childhood. The proto-oncogene MYCN is amplified in 25% of NB, and is associated with enhanced angiogenesis and poor survival. Vascular endothelial growth factor (VEGF) is the most potent angiogenic growth factor and, with the hepatocyte growth factor (HGF)/c-MET signalling pathway, is implicated in the progression of human NB. Cabozantinib (CBZ) is a small-molecule kinase inhibitor with potent activity against VEGFR2 and MET, currently in clinical trials against NB. In this study, the efficacy of CBZ was evaluated in tumors spontaneously arising in the TH-MYCN GEM model of high-risk NB, previously shown to faithfully recapitulate the radiological and hypervascular characteristics of childhood disease. TH-MYCN mice with spontaneous abdominal tumors were treated daily with either vehicle or 30mg/kg CBZ. Non-invasive T2-weighted anatomical MRI revealed that CBZ induced significant (p This study demonstrates that CBZ is efficacious against, and conveys a survival benefit for the TH-MYCN GEM model of NB. The data reinforces native T1 as a biomarker of response to anti-vascular therapy due to its sensitivity to therapy-induced damage to erythrocytes and/or cell death-mediated increase in macromolecules into the extracellular space. Relatively fast R2* rates in NB arising in the TH-MYCN model are strongly associated with vascular instability, characterised by numerous regions of aggregated paramagnetic erythrocytes (“blood lakes”), and treatment-induced thrombosis with the pan-VEGFR inhibitor cediranib which increased tumor R2*. The CBZ-induced decrease in R2* is clearly associated with vascular disruption, hence precluding the extravasation of deoxygenated red blood cells. Citation Format: Gilberto S. Almeida, Philippa King, Yann Jamin, Albert Hallsworth, Hannah Webber, Sergey Popov, Andrew D.J. Pearson, Louis Chesler, Simon P. Robinson. Tumor response to cabozantinib in the TH-MYCN GEM model of neuroblastoma. [abstract]. In: Proceedings of the 106th Annual Meeting of the American Association for Cancer Research; 2015 Apr 18-22; Philadelphia, PA. Philadelphia (PA): AACR; Cancer Res 2015;75(15 Suppl):Abstract nr 491. doi:10.1158/1538-7445.AM2015-491

Collaboration


Dive into the Hannah Webber's collaboration.

Top Co-Authors

Avatar

Louis Chesler

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Simon P. Robinson

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Yann Jamin

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Albert Hallsworth

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Jayne Murray

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Andrew D.J. Pearson

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Lynsey Vaughan

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Laura Gamble

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Gilberto S. Almeida

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Jessica K.R. Boult

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge