Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanne B. Moeller is active.

Publication


Featured researches published by Hanne B. Moeller.


Journal of Biological Chemistry | 2008

Vasopressin-stimulated Increase in Phosphorylation at Ser269 Potentiates Plasma Membrane Retention of Aquaporin-2

Jason D. Hoffert; Robert A. Fenton; Hanne B. Moeller; Brigitte Simons; Dmitry Tchapyjnikov; Bradley W. McDill; Ming-Jiun Yu; Trairak Pisitkun; Feng Chen; Mark A. Knepper

Vasopressin controls water excretion through regulation of aquaporin-2 (AQP2) trafficking in renal collecting duct cells. Using mass spectrometry, we previously demonstrated four phosphorylated serines (Ser256, Ser261, Ser264, and Ser269) in the carboxyl-terminal tail of rat AQP2. Here, we used phospho-specific antibodies and protein mass spectrometry to investigate the roles of vasopressin and cyclic AMP in the regulation of phosphorylation at Ser269 and addressed the role of this site in AQP2 trafficking. The V2 receptor-specific vasopressin analog dDAVP increased Ser(P)269-AQP2 abundance more than 10-fold, but at a rate much slower than the corresponding increase in Ser256 phosphorylation. Vasopressin-mediated changes in phosphorylation at both sites were mimicked by cAMP addition and inhibited by protein kinase A (PKA) antagonists. In vitro kinase assays, however, demonstrated that PKA phosphorylates Ser256, but not Ser269. Phosphorylation of AQP2 at Ser269 did not occur when Ser256 was replaced by an unphosphorylatable amino acid, as seen in both S256L-AQP2 mutant mice and in Madin-Darby canine kidney cells expressing an S256A mutant, suggesting that Ser269 phosphorylation depends upon prior phosphorylation at Ser256. Immunogold electron microscopy localized Ser(P)269-AQP2 solely in the apical plasma membrane of rat collecting duct cells, in contrast to the other three phospho-forms (found in both apical plasma membrane and intracellular vesicles). Madin-Darby canine kidney cells expressing an S269D “phosphomimic” AQP2 mutant showed constitutive localization at the plasma membrane. The data support a model in which vasopressin-mediated phosphorylation of AQP2 at Ser269:(a) depends on prior PKA-mediated phosphorylation of Ser256 and (b) enhances apical plasma membrane retention of AQP2.


Nature Immunology | 2012

Virus-cell fusion as a trigger of innate immunity dependent on the adaptor STING

Christian K. Holm; Søren B. Jensen; Martin R. Jakobsen; Natalia Cheshenko; Kristy A. Horan; Hanne B. Moeller; Regina Gonzalez-Dosal; Simon B. Rasmussen; Maria H Christensen; Timur O. Yarovinsky; Frazer J. Rixon; Betsy C. Herold; Katherine A. Fitzgerald; Søren R. Paludan

The innate immune system senses infection by detecting either evolutionarily conserved molecules essential for the survival of microbes or the abnormal location of molecules. Here we demonstrate the existence of a previously unknown innate detection mechanism induced by fusion between viral envelopes and target cells. Virus-cell fusion specifically stimulated a type I interferon response with expression of interferon-stimulated genes, in vivo recruitment of leukocytes and potentiation of signaling via Toll-like receptor 7 (TLR7) and TLR9. The fusion-dependent response was dependent on the stimulator of interferon genes STING but was independent of DNA, RNA and viral capsid. We suggest that membrane fusion is sensed as a danger signal with potential implications for defense against enveloped viruses and various conditions of giant-cell formation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Phosphorylation of aquaporin-2 regulates its endocytosis and protein–protein interactions

Hanne B. Moeller; Jeppe Praetorius; Michael Rützler; Robert A. Fenton

The water channel aquaporin-2 (AQP2) is essential for urine concentration. Vasopressin regulates phosphorylation of AQP2 at four conserved serine residues at the COOH-terminal tail (S256, S261, S264, and S269). We used numerous stably transfected Madin–Darby canine kidney cell models, replacing serine residues with either alanine (A), which prevents phosphorylation, or aspartic acid (D), which mimics the charged state of phosphorylated AQP2, to address whether phosphorylation is involved in regulation of (i) apical plasma membrane abundance of AQP2, (ii) internalization of AQP2, (iii) AQP2 protein–protein interactions, and (iv) degradation of AQP2. Under control conditions, S256D- and 269D-AQP2 mutants had significantly greater apical plasma membrane abundance compared to wild type (WT)-AQP2. Activation of adenylate cyclase significantly increased the apical plasma membrane abundance of all S-A or S-D AQP2 mutants with the exception of 256D-AQP2, although 256A-, 261A-, and 269A-AQP2 mutants increased to a lesser extent than WT-AQP2. Biotin internalization assays and confocal microscopy demonstrated that the internalization of 256D- and 269D-AQP2 from the plasma membrane was slower than WT-AQP2. The slower internalization corresponded with reduced interaction of S256D- and 269D-AQP2 with several proteins involved in endocytosis, including Hsp70, Hsc70, dynamin, and clathrin heavy chain. The mutants with the slowest rate of internalization, 256D- and 269D-AQP2, had a greater protein half-life (t1/2 = 5.1 h and t1/2 = 4.4 h, respectively) compared to WT-AQP2 (t1/2 = 2.9 h). Our results suggest that vasopressin-mediated membrane accumulation of AQP2 can be controlled via regulated exocytosis and endocytosis in a process that is dependent on COOH terminal phosphorylation and subsequent protein–protein interactions.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Acute regulation of aquaporin-2 phosphorylation at Ser-264 by vasopressin

Robert A. Fenton; Hanne B. Moeller; Jason D. Hoffert; Ming-Jiun Yu; Søren Nielsen; Mark A. Knepper

By phosphoproteome analysis, we identified a phosphorylation site, serine 264 (pS264), in the COOH terminus of the vasopressin-regulated water channel, aquaporin-2 (AQP2). In this study, we examined the regulation of AQP2 phosphorylated at serine 264 (pS264–AQP2) by vasopressin, using a phospho-specific antibody (anti-pS264). Immunohistochemical analysis showed pS264–AQP2 labeling of inner medullary collecting duct (IMCD) from control mice, whereas AQP2 knockout mice showed a complete absence of labeling. In rat and mouse, pS264–AQP2 was present throughout the collecting duct system, from the connecting tubule to the terminal IMCD. Immunogold electron microscopy, combined with double-labeling confocal immunofluorescence microscopy with organelle-specific markers, determined that the majority of pS264 resides in compartments associated with the plasma membrane and early endocytic pathways. In Brattleboro rats treated with [deamino-Cys-1, d-Arg-8]vasopressin (dDAVP), the abundance of pS264–AQP2 increased 4-fold over controls. Additionally, dDAVP treatment resulted in a time-dependent change in the distribution of pS264 from predominantly intracellular vesicles, to both the basolateral and apical plasma membranes. Sixty minutes after dDAVP exposure, a proportion of pS264–AQP2 was observed in clathrin-coated vesicles, early endosomal compartments, and recycling compartments, but not lysosomes. Overall, our results are consistent with a dynamic effect of AVP on the phosphorylation and subcellular distribution of AQP2.


Kidney International | 2009

Serine 269 phosphorylated aquaporin-2 is targeted to the apical membrane of collecting duct principal cells.

Hanne B. Moeller; Mark A. Knepper; Robert A. Fenton

Trafficking of the water channel aquaporin-2 to the apical plasma membrane of the collecting duct is mediated by arginine vasopressin, rendering the cell permeable to water. We recently identified a novel form of aquaporin-2 that is phosphorylated at serine-269 (pS269-AQP2). Using antibodies specific for this form of the water channel, we detected rat and mouse pS269-AQP2 in the connecting tubule and throughout the collecting duct system. Using confocal immunofluorescence microscopy with organelle-specific markers and immunogold electron microscopy, we found that pS269-AQP2 was found only on the apical plasma membrane of principal cells. In vasopressin-deficient Brattleboro rats, pS269-AQP2 was undetectable but dramatically increased in abundance after these rats were treated with [deamino-Cys-1, d-Arg-8]vasopressin (dDAVP). This increase occurred only at the apical plasma membrane, even after long-term dDAVP treatment. Following dDAVP there was a time-dependent redistribution of total aquaporin-2 from predominantly intracellular vesicles to the apical plasma membrane, clathrin-coated vesicles, early endosomal compartments, and lysosomes. However, pS269-AQP2 was found only on the apical plasma membrane at any time. Our results show that S269 phosphorylated aquaporin-2 is exclusively associated with the apical plasma membrane, where it escapes endocytosis to remain at the cell surface.


American Journal of Physiology-renal Physiology | 2011

Regulation of the water channel aquaporin-2 by posttranslational modification

Hanne B. Moeller; Emma T. B. Olesen; Robert A. Fenton

The cellular functions of many eukaryotic membrane proteins, including the vasopressin-regulated water channel aquaporin-2 (AQP2), are regulated by posttranslational modifications. In this article, we discuss the experimental discoveries that have advanced our understanding of how posttranslational modifications affect AQP2 function, especially as they relate to the role of AQP2 in the kidney. We review the most recent data demonstrating that glycosylation and, in particular, phosphorylation and ubiquitination are mechanisms that regulate AQP2 activity, subcellular sorting and distribution, degradation, and protein interactions. From a clinical perspective, posttranslational modification resulting in protein misrouting or degradation may explain certain forms of nephrogenic diabetes insipidus. In addition to providing major insight into the function and dynamics of renal AQP2 regulation, the analysis of AQP2 posttranslational modification may provide general clues as to the role of posttranslational modification for regulation of other membrane proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Vasopressin-independent targeting of aquaporin-2 by selective E-prostanoid receptor agonists alleviates nephrogenic diabetes insipidus

Emma T. B. Olesen; Michael Rützler; Hanne B. Moeller; Helle A. Praetorius; Robert A. Fenton

In the kidney, the actions of vasopressin on its type-2 receptor (V2R) induce increased water reabsorption alongside polyphosphorylation and membrane targeting of the water channel aquaporin-2 (AQP2). Loss-of-function mutations in the V2R cause X-linked nephrogenic diabetes insipidus. Treatment of this condition would require bypassing the V2R to increase AQP2 membrane targeting, but currently no specific pharmacological therapy is available. The present study examined specific E-prostanoid receptors for this purpose. In vitro, prostaglandin E2 (PGE2) and selective agonists for the E-prostanoid receptors EP2 (butaprost) or EP4 (CAY10580) all increased trafficking and ser-264 phosphorylation of AQP2 in Madin-Darby canine kidney cells. Only PGE2 and butaprost increased cAMP and ser-269 phosphorylation of AQP2. Ex vivo, PGE2, butaprost, or CAY10580 increased AQP2 phosphorylation in isolated cortical tubules, whereas PGE2 and butaprost selectively increased AQP2 membrane accumulation in kidney slices. In vivo, a V2R antagonist caused a severe urinary concentrating defect in rats, which was greatly alleviated by treatment with butaprost. In conclusion, EP2 and EP4 agonists increase AQP2 phosphorylation and trafficking, likely through different signaling pathways. Furthermore, EP2 selective agonists can partially compensate for a nonfunctional V2R, providing a rationale for new treatment strategies for hereditary nephrogenic diabetes insipidus.


American Journal of Physiology-renal Physiology | 2009

Role of multiple phosphorylation sites in the COOH-terminal tail of aquaporin-2 for water transport: evidence against channel gating

Hanne B. Moeller; Nanna MacAulay; Mark A. Knepper; Robert A. Fenton

Arginine vasopressin (AVP)-regulated phosphorylation of the water channel aquaporin-2 (AQP2) at serine 256 (S256) is essential for its accumulation in the apical plasma membrane of collecting duct principal cells. In this study, we examined the role of additional AVP-regulated phosphorylation sites in the COOH-terminal tail of AQP2 on protein function. When expressed in Xenopus laevis oocytes, prevention of AQP2 phosphorylation at S256A (S256A-AQP2) reduced osmotic water permeability threefold compared with wild-type (WT) AQP2-injected oocytes. In contrast, prevention of AQP2 single phosphorylation at S261 (S261A), S264 (S264A), and S269 (S269A), or all three sites in combination had no significant effect on water permeability. Similarly, oocytes expressing S264D-AQP2 and S269D-AQP2, mimicking AQP2 phosphorylated at these residues, had similar water permeabilities to WT-AQP2-expressing oocytes. The use of high-resolution confocal laser-scanning microscopy, as well as biochemical analysis demonstrated that all AQP2 mutants, with the exception of S256A-AQP2, had equal abundance in the oocyte plasma membrane. Correlation of osmotic water permeability relative to plasma membrane abundance demonstrated that lack of phosphorylation at S256, S261, S264, or S269 had no effect on AQP2 unit water transport. Similarly, no effect on AQP2 unit water transport was observed for the 264D and 269D forms, indicating that phosphorylation of the COOH-terminal tail of AQP2 is not involved in gating of the channel. The use of phosphospecific antibodies demonstrated that AQP2 S256 phosphorylation is not dependent on any of the other phosphorylation sites, whereas S264 and S269 phosphorylation depend on prior phosphorylation of S256. In contrast, AQP2 S261 phosphorylation is independent of the phosphorylation status of S256.


Pflügers Archiv: European Journal of Physiology | 2012

Cell biology of vasopressin-regulated aquaporin-2 trafficking

Hanne B. Moeller; Robert A. Fenton

Whole-body water balance is predominantly controlled by the kidneys, which have the ability to concentrate or dilute the urine in the face of altered fluid and solute intake. Regulated water excretion is controlled by various hormones and signaling molecules, with the antidiuretic hormone arginine vasopressin (AVP) playing an essential role, predominantly via its modulatory effects on the function of the water channel aquaporin-2 (AQP2). The clinical conditions, central and nephrogenic diabetes insipidus, emphasize the importance of the AVP-AQP2 axis. In this article, we summarize the most important and recent studies on AVP-regulated trafficking of AQP2, with focus on the cellular components mediating (1) AQP2 vesicle targeting to the principal cell apical plasma membrane, (2) docking and fusion of AQP2-containing vesicles, (3) regulated removal of AQP2 from the plasma membrane, and (4) posttranslational modifications of AQP2 that control several of these processes. Insight into the molecular mechanisms responsible for regulated AQP2 trafficking is proving to be fundamental for development of novel therapies for water balance disorders.


Neuroscience | 2009

Vasopressin-dependent short-term regulation of aquaporin 4 expressed in Xenopus oocytes.

Hanne B. Moeller; Robert A. Fenton; Thomas Zeuthen; Nanna MacAulay

Aquaporin 4 (AQP4) is abundantly expressed in the perivascular glial endfeet in the central nervous system (CNS), where it is involved in the exchange of fluids between blood and brain. At this location, AQP4 contributes to the formation and/or the absorption of the brain edema that may arise following pathologies such as brain injuries, brain tumours, and cerebral ischemia. As vasopressin and its G-protein-coupled receptor (V1(a)R) have been shown to affect the outcome of brain edema, we have investigated the regulatory interaction between AQP4 and V1(a)R by heterologous expression in Xenopus laevis oocytes. The water permeability of AQP4/V1(a)R-expressing oocytes was reduced in a vasopressin-dependent manner, as a result of V1(a)R-dependent internalization of AQP4. Vasopressin-dependent internalization was not observed in AQP9/V1(a)R-expressing oocytes. The regulatory interaction between AQP4 and V1(a)R involves protein kinase C (PKC) activation and is reduced upon mutation of Ser(180) on AQP4 to an alanine. Thus, the present study demonstrates at the molecular level a functional link between the vasopressin receptor V1(a)R and AQP4. This functional interaction between AQP4 and V1(a)R may prove to be a potential therapeutic target in the prevention and treatment of brain edema.

Collaboration


Dive into the Hanne B. Moeller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark A. Knepper

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nanna MacAulay

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jason D. Hoffert

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge