Hanne Müller
University of Freiburg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanne Müller.
The EMBO Journal | 1997
Peter J. T. Dekker; Falk Martin; Ammy C. Maarse; Ulf Bömer; Hanne Müller; Bernard Guiard; Michiel Meijer; Joachim Rassow; Nikolaus Pfanner
Preprotein import into mitochondria is mediated by translocases located in the outer and inner membranes (Tom and Tim) and a matrix Hsp70–Tim44 driving system. By blue native electrophoresis, we identify an ∼90K complex with assembled Tim23 and Tim17 as the core of the inner membrane import site for presequence‐containing preproteins. Preproteins spanning the two membranes link virtually all Tim core complexes with one in four Tom complexes in a stable 600K supercomplex. Neither mtHsp70 nor Tim44 are present in stoichiometric amounts in the 600K complex. Preproteins in transit stabilize the Tim core complex, preventing an exchange of subunits. Our studies define a central role for the Tim core complexes in mitochondrial protein import; they are not passive diffusion channels, but can stably interact with preproteins and determine the number of translocation contact sites. We propose the hypothesis that mtHsp70 functions in protein import not only by direct interaction with preproteins, but also by exerting a regulatory effect on the Tim channel.
Molecular and Cellular Biology | 1998
Peter J. T. Dekker; Michael T. Ryan; Jan Brix; Hanne Müller; Angelika Hönlinger; Nikolaus Pfanner
ABSTRACT The preprotein translocase of the outer mitochondrial membrane (Tom) is a multisubunit machinery containing receptors and a general import pore (GIP). We have analyzed the molecular architecture of the Tom machinery. The receptor Tom22 stably associates with Tom40, the main component of the GIP, in a complex with a molecular weight of ∼400,000 (∼400K), while the other receptors, Tom20 and Tom70, are more loosely associated with this GIP complex and can be found in distinct subcomplexes. A yeast mutant lacking both Tom20 and Tom70 can still form the GIP complex when sufficient amounts of Tom22 are synthesized. Besides the essential proteins Tom22 and Tom40, the GIP complex contains three small subunits, Tom5, Tom6, and Tom7. In mutant mitochondria lacking Tom6, the interaction between Tom22 and Tom40 is destabilized, leading to the dissociation of Tom22 and the generation of a subcomplex of ∼100K containing Tom40, Tom7, and Tom5. Tom6 is required to promote but not to maintain a stable association between Tom22 and Tom40. The following conclusions are suggested. (i) The GIP complex, containing Tom40, Tom22, and three small Tom proteins, forms the central unit of the outer membrane import machinery. (ii) Tom20 and Tom70 are not essential for the generation of the GIP complex. (iii) Tom6 functions as an assembly factor for Tom22, promoting its stable association with Tom40.
Journal of Cell Biology | 2003
Kaye N. Truscott; Wolfgang Voos; Ann E. Frazier; Maria Lind; Yanfeng Li; Andreas Geissler; Jan Dudek; Hanne Müller; Albert Sickmann; Helmut E. Meyer; Chris Meisinger; Bernard Guiard; Peter Rehling; Nikolaus Pfanner
Transport of preproteins into the mitochondrial matrix is mediated by the presequence translocase–associated motor (PAM). Three essential subunits of the motor are known: mitochondrial Hsp70 (mtHsp70); the peripheral membrane protein Tim44; and the nucleotide exchange factor Mge1. We have identified the fourth essential subunit of the PAM, an essential inner membrane protein of 18 kD with a J-domain that stimulates the ATPase activity of mtHsp70. The novel J-protein (encoded by PAM18/YLR008c/TIM14) is required for the interaction of mtHsp70 with Tim44 and protein translocation into the matrix. We conclude that the reaction cycle of the PAM of mitochondria involves an essential J-protein.
The EMBO Journal | 2006
Nils Wiedemann; Eugen Urzica; Bernard Guiard; Hanne Müller; Christiane Lohaus; Helmut E. Meyer; Michael T. Ryan; Chris Meisinger; Ulrich Mühlenhoff; Roland Lill; Nikolaus Pfanner
Mitochondria are indispensable for cell viability; however, major mitochondrial functions including citric acid cycle and oxidative phosphorylation are dispensable. Most known essential mitochondrial proteins are involved in preprotein import and assembly, while the only known essential biosynthetic process performed by mitochondria is the biogenesis of iron–sulfur clusters (ISC). The components of the mitochondrial ISC‐assembly machinery are derived from the prokaryotic ISC‐assembly machinery. We have identified an essential mitochondrial matrix protein, Isd11 (YER048w‐a), that is found in eukaryotes only. Isd11 is required for biogenesis of cellular Fe/S proteins and thus is a novel subunit of the mitochondrial ISC‐assembly machinery. It forms a complex with the cysteine desulfurase Nfs1 and is required for formation of an Fe/S cluster on the Isu scaffold proteins. We conclude that Isd11 is an indispensable eukaryotic component of the mitochondrial machinery for biogenesis of Fe/S proteins.
Journal of Biological Chemistry | 1999
Michael T. Ryan; Hanne Müller; Nikolaus Pfanner
The ADP/ATP carrier (AAC) is the major representative of the inner membrane carrier proteins of mitochondria that are synthesized without cleavable presequences. The characterization of the import pathway of AAC into mitochondria has mainly depended on an operational staging system. Here, we introduce two approaches for analyzing the import of AAC, blue native electrophoresis and folding-induced translocation arrest, that allow a functional staging of AAC transport across the outer membrane. (i) Blue native electrophoresis permits a direct monitoring of the receptor stage of AAC and its chase into mitochondria. Binding to this stage requires the receptor protein Tom70 but not Tom37 or Tom20. (ii) A fusion protein between AAC and dihydrofolate reductase can be selectively arrested in the general import pore complex of the outer membrane by ligand induced folding of the passenger protein. Cross-linking demonstrates that the arrested preprotein is in close contact not only with several receptors and Tim10 but also with the channel protein Tom40, providing the first direct evidence that cleavable preproteins and carrier preproteins interact with the same outer membrane channel. The staging system presented here permits a molecular dissection of AAC transport across the outer mitochondrial membrane, relates it to functional units of the translocases, and indicates a coordinated and successive cooperation of distinct translocase subcomplexes during transfer of the preprotein.
Molecular and Cellular Biology | 2001
Chris Meisinger; Michael T. Ryan; Kerstin Hill; Kirstin Model; Joo Hyun Lim; Albert Sickmann; Hanne Müller; Helmut E. Meyer; Richard Wagner; Nikolaus Pfanner
ABSTRACT The preprotein translocase of the yeast mitochondrial outer membrane (TOM) consists of the initial import receptors Tom70 and Tom20 and a ∼400-kDa (400 K) general import pore (GIP) complex that includes the central receptor Tom22, the channel Tom40, and the three small Tom proteins Tom7, Tom6, and Tom5. We report that the GIP complex is a highly stable complex with an unusual resistance to urea and alkaline pH. Under mild conditions for mitochondrial lysis, the receptor Tom20, but not Tom70, is quantitatively associated with the GIP complex, forming a 500K to 600K TOM complex. A preprotein, stably arrested in the GIP complex, is released by urea but not high salt, indicating that ionic interactions are not essential for keeping the preprotein in the GIP complex. Under more stringent detergent conditions, however, Tom20 and all three small Tom proteins are released, while the preprotein remains in the GIP complex. Moreover, purified outer membrane vesicles devoid of translocase components of the intermembrane space and inner membrane efficiently accumulate the preprotein in the GIP complex. Together, Tom40 and Tom22 thus represent the functional core unit that stably holds accumulated preproteins. The GIP complex isolated from outer membranes exhibits characteristic TOM channel activity with two coupled conductance states, each corresponding to the activity of purified Tom40, suggesting that the complex contains two simultaneously active and coupled channel pores.
Molecular Cell | 2002
Peter Kovermann; Kaye N. Truscott; Bernard Guiard; Peter Rehling; Naresh B. Sepuri; Hanne Müller; Robert E. Jensen; Richard Wagner; Nikolaus Pfanner
The protein insertion complex of the mitochondrial inner membrane is crucial for import of the numerous multitopic membrane proteins with internal targeting signals. Little is known about the molecular mechanism of this complex, including whether it forms a real channel or merely acts as scaffold for protein insertion. We report the unexpected observation that Tim22 is the only essential membrane-integrated subunit of the complex. Reconstituted Tim22 forms a hydrophilic, high-conductance channel with distinct opening states and pore diameters. The channel is voltage-activated and specifically responds to an internal targeting signal, but not to presequences. Thus, a protein insertion complex can combine three essential functions, signal recognition, channel formation, and energy transduction, in one central component.
Molecular and Cellular Biology | 2002
Kaye N. Truscott; Nils Wiedemann; Peter Rehling; Hanne Müller; Chris Meisinger; Nikolaus Pfanner; Bernard Guiard
ABSTRACT The mitochondrial intermembrane space contains a protein complex essential for cell viability, the Tim9-Tim10 complex. This complex is required for the import of hydrophobic membrane proteins, such as the ADP/ATP carrier (AAC), into the inner membrane. Different views exist about the role played by the Tim9-Tim10 complex in translocation of the AAC precursor across the outer membrane. For this report we have generated a new tim10 yeast mutant that leads to a strong defect in AAC import into mitochondria. Thereby, for the first time, authentic AAC is stably arrested in the translocase complex of the outer membrane (TOM), as shown by antibody shift blue native electrophoresis. Surprisingly, AAC is still associated with the receptors Tom70 and Tom20 when the function of Tim10 is impaired. The nonessential Tim8-Tim13 complex of the intermembrane space is not involved in the transfer of AAC across the outer membrane. These results define a two-step mechanism for translocation of AAC across the outer membrane. The initial insertion of AAC into the import channel is independent of the function of Tim9-Tim10; however, completion of translocation across the outer membrane, including release from the TOM complex, requires a functional Tim9-Tim10 complex.
Journal of Biological Chemistry | 2006
Chris Meisinger; Nils Wiedemann; Michael Rissler; Andreas Strub; Dusanka Milenkovic; Birgit Schönfisch; Hanne Müller; Vera Kozjak; Nikolaus Pfanner
The mitochondrial outer membrane contains two distinct machineries for protein import and protein sorting that function in a sequential manner: the general translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex), which is dedicated to β-barrel proteins. The SAMcore complex consists of three subunits, Sam35, Sam37, and Sam50, that can associate with a fourth subunit, the morphology component Mdm10, to form the SAMholo complex. Whereas the SAMcore complex is required for the biogenesis of all β-barrel proteins, Mdm10 and the SAMholo complex play a selective role in β-barrel biogenesis by promoting assembly of Tom40 but not of porin. We report that Tom7, a conserved subunit of the TOM complex, functions in an antagonistic manner to Mdm10 in biogenesis of Tom40 and porin. We show that Tom7 promotes segregation of Mdm10 from the SAMholo complex into a low molecular mass form. Upon deletion of Tom7, the fraction of Mdm10 in the SAMholo complex is significantly increased, explaining the opposing functions of Tom7 and Mdm10 in β-barrel sorting. Thus the role of Tom7 is not limited to the TOM complex. Tom7 functions in mitochondrial protein biogenesis by a new mechanism, segregation of a sorting component, leading to a differentiation of β-barrel assembly.
The EMBO Journal | 1987
Mechler B; Hanne Müller; Wolf Dh
Studies were performed to unravel the activation and maturation mechanism of vacuolar (lysosomal) proteinases in Saccharomyces cerevisiae. In vivo and in vitro studies show that proteinase yscA and proteinase yscB are involved in the activation and processing event of pro‐carboxypeptidase yscY. Processing and activation of pro‐carboxypeptidase yscY by proteinase yscA depends on an additional factor contained in the vacuolar fraction. Comparable activation can be mimicked by sodium polyphosphate. Optimum pH for processing by this proteinase yscA‐triggered event is 5. The proteinase yscA‐triggered maturation process of pro‐carboxypeptidase yscY leads to an intermediate mol. wt form of the enzyme which is, however, fully active. Proteinase yscB transfers the intermediate mol. wt form of the original precursor to the apparently authentic, mature and active carboxypeptidase yscY. An activation and maturation scheme is devised.