Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanne Struyfs is active.

Publication


Featured researches published by Hanne Struyfs.


Science Translational Medicine | 2014

TREM2 mutations implicated in neurodegeneration impair cell surface transport and phagocytosis

Gernot Kleinberger; Y. Yamanishi; Marc Suárez-Calvet; Eva Czirr; Ebba Lohmann; Elise Cuyvers; Hanne Struyfs; N. Pettkus; Andrea Wenninger-Weinzierl; F. Mazaheri; Sabina Tahirovic; Alberto Lleó; Daniel Alcolea; Juan Fortea; Michael Willem; Sven Lammich; José-Luis Molinuevo; Raquel Sánchez-Valle; Anna Antonell; Alfredo Ramirez; Michael T. Heneka; Kristel Sleegers; J. van der Zee; J. J. Martin; S. Engelborghs; A. Demirtas-Tatlidede; Henrik Zetterberg; C. Van Broeckhoven; Hakan Gurvit; Tony Wyss-Coray

Loss of TREM2 function impairs phagocytosis and correlates with decreased soluble TREM2 in biological fluids of patients with neurodegenerative disorders. TREM2 and Neurodegeneration Little is known about how risk factors facilitate initiation and propagation of neurodegenerative disorders. Rare mutations in TREM2 increase the risk for several neurodegenerative disorders including Alzheimer’s disease (AD), Parkinson’s disease, and frontotemporal dementia (FTD). Kleinberger et al. now show that mutations associated with neurodegenerative diseases interfere with TREM2 function by preventing its maturation, transport to the cell surface, and shedding. Expression of mutant TREM2 led to reduced phagocytic activity by different cell types, suggesting that removal of cellular debris by, for example, microglia in the brain might be affected in patients with TREM2 mutations. In a patient with FTD-like syndrome carrying a homozygous TREM2 mutation, no soluble TREM2 was detected in the cerebrospinal fluid (CSF) and plasma. Patients with sporadic FTD and AD showed slightly reduced concentrations of soluble TREM2 in their CSF. Although much further testing and validation are needed, soluble TREM2 might be useful as a marker of neurodegeneration. Genetic variants in the triggering receptor expressed on myeloid cells 2 (TREM2) have been linked to Nasu-Hakola disease, Alzheimer’s disease (AD), Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia (FTD), and FTD-like syndrome without bone involvement. TREM2 is an innate immune receptor preferentially expressed by microglia and is involved in inflammation and phagocytosis. Whether and how TREM2 missense mutations affect TREM2 function is unclear. We report that missense mutations associated with FTD and FTD-like syndrome reduce TREM2 maturation, abolish shedding by ADAM proteases, and impair the phagocytic activity of TREM2-expressing cells. As a consequence of reduced shedding, TREM2 is virtually absent in the cerebrospinal fluid (CSF) and plasma of a patient with FTD-like syndrome. A decrease in soluble TREM2 was also observed in the CSF of patients with AD and FTD, further suggesting that reduced TREM2 function may contribute to increased risk for two neurodegenerative disorders.


Embo Molecular Medicine | 2016

sTREM2 cerebrospinal fluid levels are a potential biomarker for microglia activity in early‐stage Alzheimer's disease and associate with neuronal injury markers

Marc Suárez-Calvet; Gernot Kleinberger; Miguel Ángel Araque Caballero; Matthias Brendel; Axel Rominger; Daniel Alcolea; Juan Fortea; Alberto Lleó; Rafael Blesa; Juan Domingo Gispert; Raquel Sánchez-Valle; Anna Antonell; Lorena Rami; José Luis Molinuevo; Frederic Brosseron; Andreas Traschütz; Michael T. Heneka; Hanne Struyfs; Sebastiaan Engelborghs; Kristel Sleegers; Christine Van Broeckhoven; Henrik Zetterberg; Bengt Nellgård; Kaj Blennow; Alexander Crispin; Michael Ewers; Christian Haass

TREM2 is an innate immune receptor expressed on the surface of microglia. Loss‐of‐function mutations of TREM2 are associated with increased risk of Alzheimers disease (AD). TREM2 is a type‐1 protein with an ectodomain that is proteolytically cleaved and released into the extracellular space as a soluble variant (sTREM2), which can be measured in the cerebrospinal fluid (CSF). In this cross‐sectional multicenter study, we investigated whether CSF levels of sTREM2 are changed during the clinical course of AD, and in cognitively normal individuals with suspected non‐AD pathology (SNAP). CSF sTREM2 levels were higher in mild cognitive impairment due to AD than in all other AD groups and controls. SNAP individuals also had significantly increased CSF sTREM2 compared to controls. Moreover, increased CSF sTREM2 levels were associated with higher CSF total tau and phospho‐tau181P, which are markers of neuronal degeneration and tau pathology. Our data demonstrate that CSF sTREM2 levels are increased in the early symptomatic phase of AD, probably reflecting a corresponding change of the microglia activation status in response to neuronal degeneration.


Alzheimers & Dementia | 2016

Performance and complications of lumbar puncture in memory clinics : Results of the multicenter lumbar puncture feasibility study

Flora H. Duits; Pablo Martinez-Lage; Claire Paquet; Sebastiaan Engelborghs; Alberto Lleó; Lucrezia Hausner; José Luis Molinuevo; Erik Stomrud; Lucia Farotti; Inez H.G.B. Ramakers; Magda Tsolaki; Constance Skarsgard; Ragnar Åstrand; Anders Wallin; Martin Vyhnalek; Marie Holmber-Clausen; Orestes Vicente Forlenza; Laura Ghezzi; Martin Ingelsson; Erik Hoff; Gerwin Roks; Alexandre de Mendonça; Janne M. Papma; Andrea Izagirre; Mariko Taga; Hanne Struyfs; Daniel Alcolea; Lutz Frölich; Mircea Balasa; Lennart Minthon

Lumbar puncture (LP) is increasingly performed in memory clinics. We investigated patient‐acceptance of LP, incidence of and risk factors for post‐LP complications in memory clinic populations.


Journal of Alzheimer's Disease | 2014

Depression in Mild Cognitive Impairment is associated with Progression to Alzheimer's Disease: A Longitudinal Study

Stefan Van der Mussele; Erik Fransen; Hanne Struyfs; Jill Luyckx; Peter Mariën; Jos Saerens; Nore Somers; Johan Goeman; Peter Paul De Deyn; Sebastiaan Engelborghs

BACKGROUND Behavioral and psychological signs and symptoms of dementia (BPSD) belong to the core symptoms of dementia and are also common in mild cognitive impairment (MCI). OBJECTIVE This study would like to contribute to the understanding of the prognostic role of BPSD in MCI for the progression to dementia due to Alzheimers disease (AD). METHODS Data were generated through an ongoing prospective longitudinal study on BPSD. Assessment was performed by means of the Middelheim Frontality Score, Behave-AD, Cohen-Mansfield Agitation Inventory, Cornell Scale for Depression in Dementia (CSDD), and Geriatric Depression Scale 30-questions (GDS-30). Cox proportional hazard models were used to test the hypothesis that certain BPSD in MCI are predictors of developing AD. RESULTS The study population consisted of 183 MCI patients at baseline. At follow-up, 74 patients were stable and 109 patients progressed to AD. The presence of significant depressive symptoms in MCI as measured by the CSDD (HR: 2.06; 95% CI: 1.23-3.44; p = 0.011) and the GDS-30 (HR: 1.77; 95% CI: 1.10-2.85; p = 0.025) were associated with progression to AD. The severity of depressive symptoms as measured by the GDS-30 was a predictor for progression too (HR: 1.06; 95% CI: 1.01-1.11; p = 0.020). Furthermore, the severity of agitated behavior, especially verbal agitation and the presence of purposeless activity, was also associated with progression, whereas diurnal rhythm disturbances were associated with no progression to AD. CONCLUSION Depressive symptoms in MCI appear to be predictors for progression to AD.


Alzheimers & Dementia | 2015

A 22-single nucleotide polymorphism Alzheimer's disease risk score correlates with family history, onset age, and cerebrospinal fluid Aβ42

Kristel Sleegers; Karolien Bettens; Arne De Roeck; Caroline Van Cauwenberghe; Elise Cuyvers; Jan Verheijen; Hanne Struyfs; Jasper Van Dongen; Steven Vermeulen; Sebastiaan Engelborghs; Mathieu Vandenbulcke; Rik Vandenberghe; Peter Paul De Deyn; Christine Van Broeckhoven

The ability to identify individuals at increased genetic risk for Alzheimers disease (AD) may streamline biomarker and drug trials and aid clinical and personal decision making.


Journal of Alzheimer's Disease | 2015

Diagnostic Accuracy of Cerebrospinal Fluid Amyloid-beta Isoforms for Early and Differential Dementia Diagnosis

Hanne Struyfs; Bianca Van Broeck; Maarten Timmers; Erik Fransen; Kristel Sleegers; Christine Van Broeckhoven; Peter Paul De Deyn; Johannes Streffer; Marc Mercken; Sebastiaan Engelborghs

BACKGROUND Overlapping cerebrospinal fluid biomarkers (CSF) levels between Alzheimers disease (AD) and non-AD patients decrease differential diagnostic accuracy of the AD core CSF biomarkers. Amyloid-β (Aβ) isoforms might improve the AD versus non-AD differential diagnosis. OBJECTIVE To determine the added diagnostic value of Aβ isoforms, Aβ(1-37), Aβ(1-38), and Aβ(1-40), as compared to the AD CSF biomarkers Aβ(1-42), T-tau, and P-tau(181P). METHODS CSF from patients with dementia due to AD (n = 50), non-AD dementias (n = 50), mild cognitive impairment due to AD (n = 50) and non-demented controls (n = 50) was analyzed with a prototype multiplex assay using MSD detection technology. The non-AD group consisted of frontotemporal dementia (FTD; n = 17), dementia with Lewy bodies (DLB; n = 17), and vascular dementia (n = 16). RESULTS Aβ(1-37) and Aβ(1-38) increased accuracy to differentiate AD from FTD or DLB. Aβ(1-37), Aβ(1-38), and Aβ(1-40) levels correlated with Mini-Mental State Examination scores and disease duration in dementia due to AD. The Aβ(1-42)/Aβ(1-40) ratio improved diagnostic performance of Aβ(1-42) in most differential diagnostic situations. Aβ(1-42) levels were lower in APOE ε4 carriers compared to non-carriers. CONCLUSIONS Aβ isoforms help to differentiate AD from FTD and DLB. Aβ isoforms increase diagnostic performance of Aβ(1-42). In contrast to Aβ1-42, Aβ isoforms seem to be correlated with disease severity in AD. Adding the Aβ isoforms to the current biomarker panel could enhance diagnostic accuracy.


Alzheimers & Dementia | 2015

C-terminal neurogranin is increased in cerebrospinal fluid but unchanged in plasma in Alzheimer's disease

Ann De Vos; Dirk Jacobs; Hanne Struyfs; Erik Fransen; Kerstin Andersson; Erik Portelius; Ulf Andreasson; Didier De Surgeloose; Dani€elle Hernalsteen; Kristel Sleegers; Caroline Robberecht; Christine Van Broeckhoven; Henrik Zetterberg; Kaj Blennow; Sebastiaan Engelborghs; Eugeen Vanmechelen

Biomarkers monitoring synaptic degeneration/loss would be valuable for Alzheimers disease (AD) diagnosis. Postsynaptic protein neurogranin may be a promising cerebrospinal fluid (CSF) biomarker but has not yet been evaluated as a plasma biomarker.


JAMA Neurology | 2015

Association of Cerebrospinal Fluid Prion Protein Levels and the Distinction Between Alzheimer Disease and Creutzfeldt-Jakob Disease

Aline Dorey; Yannick Tholance; Alain Vighetto; Armand Perret-Liaudet; Ingolf Lachman; Pierre Krolak-Salmon; Uta Wagner; Hanne Struyfs; Peter Paul De Deyn; Benaïssa Elmoualij; Willy Zorzi; David Meyronet; Nathalie Streichenberger; Sebastiaan Engelborghs; Gabor G. Kovacs; Isabelle Quadrio

IMPORTANCE Although typical forms of Alzheimer disease (AD) and Creutzfeldt-Jakob disease (CJD) are clinically distinguishable, atypical AD phenotypes may pose a diagnostic challenge. The major biological diagnostic biomarker for identifying CJD, 14-3-3 protein in cerebrospinal fluid (CSF), unfortunately lacks specificity when confronting a rapid dementia presentation. OBJECTIVE To assess the relevance of total CSF prion protein (t-PrP) levels in the differential biological diagnosis between atypical AD phenotypes and CJD. DESIGN, SETTING, AND PARTICIPANTS A retrospective study in an autopsy-confirmed cohort of 82 patients was performed to evaluate the relevance of CSF t-PrP to distinguish 30 definite cases of AD from 52 definite cases of CJD. Next, CSF t-PrP concentration was measured in a cohort of 104 patients including 55 patients with probable AD, 26 with probable sporadic CJD, and 23 control patients for whom 14-3-3 protein, total tau, phosphorylated tau 181 (P-tau181), and Aβ1-42 were available. We investigated 46 patients diagnosed as having probable AD who presented atypical phenotypes. A diagnosis strategy was proposed to classify atypical AD phenotypes with suspicion of CJD based on a decision tree combining CSF biomarkers. MAIN OUTCOMES AND MEASURES We determined CSF t-PrP levels for all patients. We calculated the ratio of total tau and P-tau181 and determined the diagnostic accuracy of each biomarker alone or in combination. We calculated the misclassification rate for each biomarker that corresponded to the percentage of patients within the group of atypical AD phenotypes wrongly classified as CJD. RESULTS In patients with CJD, CSF t-PrP concentrations were decreased compared with control participants and patients with AD. When considering the differential diagnosis of CJD compared with atypical AD phenotypes, CSF t-PrP determination reached 82.1% sensitivity and 91.3% specificity. The misclassification rate of atypical AD phenotypes decreased from 43.5%, obtained when using the CSF 14-3-3 protein determination alone, to only 4.3% when calculating the ratio total tau/(P-tau181 × t-PrP). The proposed classification tree permitted correct classification of 98.4% of the patients. CONCLUSIONS AND RELEVANCE For unusual phenotypes of AD, especially cases presenting with a biological ambiguity suggesting CJD, determination of CSF t-PrP levels increased diagnostic accuracy. The use of CSF t-PrP levels may be beneficial in clinical practice in addition to the current classic biomarkers.


Alzheimers & Dementia | 2017

Recommendations for CSF AD biomarkers in the diagnostic evaluation of dementia

Anja Hviid Simonsen; Sanna-Kaisa Herukka; Niels Andreasen; Inês Baldeiras; Maria Bjerke; Kaj Blennow; Sebastiaan Engelborghs; Giovanni B. Frisoni; Tomasz Gabryelewicz; Samantha Galluzzi; Ron Handels; Milica G. Kramberger; Agnieszka Kulczyńska; José Luis Molinuevo; Barbara Mroczko; Agneta Nordberg; Catarina R. Oliveira; Markus Otto; Juha O. Rinne; Uros Rot; Esen Saka; Hilkka Soininen; Hanne Struyfs; Silvia Suardi; Pieter Jelle Visser; Bengt Winblad; Henrik Zetterberg; Gunhild Waldemar

This article presents recommendations, based on the Grading of Recommendations, Assessment, Development, and Evaluation method, for the clinical application of cerebrospinal fluid (CSF) amyloid‐β1–42, tau, and phosphorylated tau in the diagnostic evaluation of patients with dementia. The recommendations were developed by a multidisciplinary working group based on the available evidence and consensus from focused discussions for (i) identification of Alzheimers disease (AD) as the cause of dementia, (ii) prediction of rate of decline, (iii) cost‐effectiveness, and (iv) interpretation of results. The working group found sufficient evidence to support a recommendation to use CSF AD biomarkers as a supplement to clinical evaluation, particularly in uncertain and atypical cases, to identify or exclude AD as the cause of dementia. Because of insufficient evidence, it was uncertain whether CSF AD biomarkers outperform imaging biomarkers. Operational recommendations for the interpretation of ambiguous CSF biomarker results were also provided.


Frontiers in Neurology | 2015

Cerebrospinal Fluid P-Tau181P: Biomarker for Improved Differential Dementia Diagnosis.

Hanne Struyfs; Ellis Niemantsverdriet; Joery Goossens; Erik Fransen; Jean-Jacques Martin; Peter Paul De Deyn; Sebastiaan Engelborghs

The goal of this study is to investigate the value of tau phosphorylated at threonine 181 (P-tau181P) in the Alzheimer’s disease (AD) cerebrospinal fluid (CSF) biomarker panel for differential dementia diagnosis in autopsy confirmed AD and non-AD patients. The study population consisted of 140 autopsy confirmed AD and 77 autopsy confirmed non-AD dementia patients. CSF concentrations of amyloid-β peptide of 42 amino acids (Aβ1–42), total tau protein (T-tau), and P-tau181P were determined with single analyte ELISA-kits (INNOTEST®, Fujirebio, Ghent, Belgium). Diagnostic accuracy was assessed through receiver operating characteristic (ROC) curve analyses to obtain area under the curve (AUC) values and to define optimal cutoff values to discriminate AD from pooled and individual non-AD groups. ROC curve analyses were only performed on biomarkers and ratios that differed significantly between the groups. Pairwise comparison of AUC values was performed by means of DeLong tests. The Aβ1–42/P-tau181P ratio (AUC = 0.770) performed significantly better than Aβ1–42 (AUC = 0.677, P = 0.004), T-tau (AUC = 0.592, P < 0.001), and Aβ1–42/T-tau (AUC = 0.678, P = 0.001), while P-tau181P (AUC = 0.720) performed significantly better than T-tau (AUC = 0.592, P < 0.001) to discriminate between AD and the pooled non-AD group. When comparing AD and the individual non-AD diagnoses, Aβ1–42/P-tau181P (AUC = 0.894) discriminated AD from frontotemporal dementia significantly better than Aβ1–42 (AUC = 0.776, P = 0.020) and T-tau (AUC = 0.746, P = 0.004), while P-tau181P/T-tau (AUC = 0.958) significantly improved the differentiation between AD and Creutzfeldt-Jakob disease as compared to Aβ1–42 (AUC = 0.688, P = 0.004), T-tau (AUC = 0.874, P = 0.040), and Aβ1–42/P-tau181P (AUC = 0.760, P = 0.003). In conclusion, this study demonstrates P-tau181P is an essential component of the AD CSF biomarker panel, and combined assessment of Aβ1–42, T-tau, and P-tau181P renders, to present date, the highest diagnostic power to discriminate between AD and non-AD dementias.

Collaboration


Dive into the Hanne Struyfs's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge