Hannelie Korf
Katholieke Universiteit Leuven
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hannelie Korf.
Current Opinion in Pharmacology | 2010
Femke Baeke; Tatiana Takiishi; Hannelie Korf; Conny Gysemans; Chantal Mathieu
1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D, is known to regulate calcium and phosphorus metabolism, thus being a key-player in bone-formation. However 1,25(OH)(2)D(3) also has a physiological role beyond its well-known role in skeletal homeostasis. Here, we describe 1,25(OH)(2)D(3) as an immunomodulator targeting various immune cells, including monocytes, macrophages, dendritic cells (DCs), as well as T-lymphocytes and B-lymphocytes, hence modulating both innate and adaptive immune responses. Besides being targets, immune cells express vitamin D-activating enzymes, allowing local conversion of inactive vitamin D into 1,25(OH)(2)D(3) within the immune system. Taken together, these data indicate that 1,25(OH)(2)D(3) plays a role in maintenance of immune homeostasis. Several epidemiological studies have linked inadequate vitamin D levels to a higher susceptibility of immune-mediated disorders, including chronic infections and autoimmune diseases. This review will discuss the complex immune-regulatory effects of 1,25(OH)(2)D(3) on immune cells as well as its role in infectious and autoimmune diseases, more in particular in tuberculosis and type 1 diabetes (T1D).
Cell | 2007
Rajesh Jayachandran; Varadharajan Sundaramurthy; Benoit Combaluzier; Philipp Mueller; Hannelie Korf; Kris Huygen; Toru Miyazaki; Imke Albrecht; Jan Massner; Jean Pieters
Pathogenic mycobacteria survive within macrophages by avoiding lysosomal delivery, instead residing in mycobacterial phagosomes. Upon infection, the leukocyte-specific protein coronin 1 is actively recruited to mycobacterial phagosomes, where it blocks lysosomal delivery by an unknown mechanism. Analysis of macrophages from coronin 1-deficient mice showed that coronin 1 is dispensable for F-actin-dependent processes such as phagocytosis, motility, and membrane ruffling. However, upon mycobacterial infection, coronin 1 was required for activation of the Ca(2+)-dependent phosphatase calcineurin, thereby blocking lysosomal delivery of mycobacteria. In the absence of coronin 1, calcineurin activity did not occur, resulting in lysosomal delivery and killing of mycobacteria. Furthermore, blocking calcineurin activation with cyclosporin A or FK506 led to lysosomal delivery and intracellular mycobacterial killing. These results demonstrate a role for coronin 1 in activating Ca(2+) dependent signaling processes in macrophages and reveal a function for calcineurin in the regulation of phagosome-lysosome fusion upon mycobacterial infection.
Infection and Immunity | 2007
Virginie Roupie; Marta Romano; Lei Zhang; Hannelie Korf; May Young Lin; Kees L. M. C. Franken; Tom H. M. Ottenhoff; Michèl R. Klein; Kris Huygen
ABSTRACT Hypoxia and low concentrations of nitric oxide have been reported to upregulate in vitro gene expression of 48 proteins of the dormancy (DosR) regulon of Mycobacterium tuberculosis. These proteins are thought to be essential for the survival of bacteria during persistence in vivo and are targeted by the immune system during latent infection in humans. Here we have analyzed the immunogenicity of eight DosR regulon-encoded antigens by plasmid DNA vaccination of BALB/c and C57BL/6 mice, i.e., Rv1733c, Rv1738, Rv2029c (pfkB), Rv2031c/hspX (acr), Rv2032 (acg), Rv2626c, Rv2627c, and Rv2628. Strong humoral and/or cellular Th1-type (interleukin-2 and gamma interferon) immune responses could be induced against all but one (Rv1738) of these antigens. The strongest Th1 responses were measured following vaccination with DNA encoding Rv2031c and Rv2626c. Using synthetic 20-mer overlapping peptides, 11 immunodominant, predicted major histocompatibility complex class II-restricted epitopes and one Kd-restricted T-cell epitope could be identified. BALB/c and (B6D2)F1 mice persistently infected with M. tuberculosis developed immune responses against Rv1733c, Rv2031c, and Rv2626c. These findings have implications for proof-of-concept studies in mice mimicking tuberculosis (TB) latency models and their extrapolation to humans for potential new vaccination strategies against TB.
The Journal of Steroid Biochemistry and Molecular Biology | 2010
Femke Baeke; Hannelie Korf; Lut Overbergh; Evelyne van Etten; Annemieke Verstuyf; Conny Gysemans; Chantal Mathieu
Besides its actions on minerals and bone, the bioactive vitamin D metabolite, 1,25-dihydroxyvitamin D3 (1,25(OH)2D3), has important immunomodulatory properties. Within the immune system, dendritic cells represent key targets for this hormone and 1,25(OH)2D3-induced changes in their phenotype and function ultimately affects T lymphocytes. However, the presence of vitamin D receptors (VDR) in activated T cells proposes additional mechanisms for 1,25(OH)2D3 to directly regulate T cell responses. Here, we investigated the expression and kinetics of vitamin D-related genes in human activated T lymphocytes. Different activation stimuli elicited increased VDR- and 1-alpha-hydroxylase expression, with a highly similar kinetic pattern. Addition of 1,25(OH)2D3 effectively triggered VDR signaling, as evidenced by 24-hydroxylase induction, but only when introduced to T lymphocytes expressing high levels of VDR. This enhanced degree of VDR signaling correlated with a stronger inhibition of cytokines (IFN-gamma, IL-10) and modulation of homing receptor expression (CCR10, CLA) in long-term T cell cultures. Importantly, chronic 1,25(OH)2D3-exposure further amplified VDR signaling and the concomitant T cell modulating effects. In conclusion, we validate T cells as direct targets for 1,25(OH)2D3 and provide this optimized in vitro model to improve our understanding of the role of vitamin D as a direct regulator of T cell responses.
Journal of Clinical Investigation | 2009
Hannelie Korf; Seppe Vander Beken; Marta Romano; Knut R. Steffensen; Benoît Stijlemans; Jan Åke Gustafsson; Johan Grooten; Kris Huygen
Liver X receptors (LXRs) are key regulators of macrophage function, controlling transcriptional programs involved in lipid homeostasis and inflammation. However, exactly how LXRs modulate inflammation during infection remains unknown. To explore this, we used a mouse model of Mycobacterium tuberculosis infection. Upon intratracheal infection with M. tuberculosis, LXRs and LXR target genes were induced in CD11c+ lung and alveolar cells. Furthermore, mice deficient in both LXR isoforms, LXRalpha and LXRbeta (Lxra-/-Lxrb-/- mice), were more susceptible to infection, developing higher bacterial burdens and an increase in the size and number of granulomatous lesions. Interestingly, mice solely deficient in LXRalpha, but not those lacking only LXRbeta, mirrored the susceptibility of the Lxra-/-Lxrb-/- animals. Lxra-/-Lxrb-/- mice failed to mount an effective early neutrophilic airway response to infection and showed dysregulation of both pro- and antiinflammatory factors in CD11c+ lung cells. T cell responses were strongly affected in Lxra-/-Lxrb-/- mice, showing near-complete abrogation of the infection-induced Th1 function - and even more so Th17 function - in the lungs. Treatment of WT mice with the LXR agonists TO901317 and GW3965 resulted in a 10-fold decrease of the pulmonary bacterial burden and a comparable increase of Th1/Th17 function in the lungs. The dependence of LXR signaling on the neutrophil IL-17 axis represents what we believe to be a novel function for these nuclear receptors in resistance to M. tuberculosis infection and may provide a new target for therapeutics.
Journal of Immunology | 2011
Femke Baeke; Hannelie Korf; Lutgart Overbergh; Annemieke Verstuyf; Lieven Thorrez; Leentje Van Lommel; Mark Waer; Frans Schuit; Conny Gysemans; Chantal Mathieu
The use of hypocalcemic vitamin D analogs is an appealing strategy to exploit the immunomodulatory actions of active vitamin D in vivo while circumventing its calcemic side effects. The functional modulation of dendritic cells by these molecules is regarded as the key mechanism underlying their ability to regulate T cell reactivity. In this article, we demonstrate the capacity of the vitamin D analog, TX527, to target T cells directly. Microarray analysis of purified human CD3+ T cells, cultured in the presence of TX527, revealed differential expression of genes involved in T cell activation, proliferation, differentiation, and migratory capacity. Accordingly, functional analysis showed a TX527-mediated suppression of the T cell proliferative capacity and activation status, accompanied by decreased expression of effector cytokines (IFN-γ, IL-4, and IL-17). Furthermore, TX527 triggered the emergence of CD4+CD25highCD127low regulatory T cells featuring elevated levels of IL-10, CTLA-4, and OX40 and the functional capacity to suppress activation and proliferation of effector T cells. Moreover, the vitamin D analog profoundly altered the homing receptor profile of T cells and their migration toward chemokine ligands. Remarkably, TX527 not only modulated skin-homing receptors as illustrated for the parent compound, but also reduced the expression of lymphoid organ-homing receptors (CD62L, CCR7, and CXCR4) and uniquely promoted surface expression of inflammatory homing receptors (CCR5, CXCR3, and CXCR6) on T cells. We conclude that TX527 directly affects human T cell function, thereby inhibiting effector T cell reactivity while inducing regulatory T cell characteristics, and imprints them with a specific homing signature favoring migration to sites of inflammation.
Pediatric Nephrology | 2010
Femke Baeke; Conny Gysemans; Hannelie Korf; Chantal Mathieu
Chronic kidney disease (CKD) is characterized by a loss of kidney function and dysregulation of vitamin D metabolism. Well known are the defects in final activation of vitamin D to 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], resulting in renal osteodystrophy. However, in recent years, 1,25(OH)2D3 has been identified as having effects far beyond calcium and bone metabolism. In this review, specific attention is given to the effects of 1,25(OH)2D3 on the immune system and the implications of vitamin D deficiency, a feature of many patients with CKD, on immune function.
Immunobiology | 2012
Hannelie Korf; Mathias Wenes; Benoît Stijlemans; Tatiana Takiishi; Sofie Robert; Michela Miani; Decio L. Eizirik; Conny Gysemans; Chantal Mathieu
The vitamin D receptor (VDR) is a hormone nuclear receptor regulating bone and calcium homeostasis. Studies revealing the expression of VDR on immune cells point toward a role for VDR-dependent signaling pathways in immunity. Here we verified the ability of the natural VDR ligand, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) to interfere in inflammatory and T cell stimulatory capacity of macrophages, in particular within a chronic inflammatory disease features of experimental type 1 diabetes (T1D). We demonstrated that VDR is constitutively expressed in macrophages and both the levels of VDR and its downstream targets, are clearly induced by 1,25(OH)(2)D(3). In control mice, macrophage programming with 1,25(OH)(2)D(3) partially abrogated the activation-provoked expression of IL-12p40, TNFα and iNOS as well as the effector T cell-recruiting chemokines, CXCL9, CXCL10 and CXCL11. Targeting VDR signaling in macrophages counteracted their T-cell stimulatory ability despite essentially unaltered expression of antigen-presenting and costimulatory molecules. Furthermore, even in non-obese diabetic (NOD) mice, where macrophages/monocytes featured a heightened responsiveness toward danger signals and a superior T cell stimulatory capacity, 1,25(OH)(2)D(3) successfully curtailed these basic macrophage-mediated functions. Interestingly, the inhibitory action of the active compound was associated with an IL-10-dependent mechanism since 1,25(OH)(2)D(3)-treatment of IL-10-deficient macrophages failed to reproduce the characteristic repression on inflammatory mediators or T cell proliferation. Combined, these results highlight the possible therapeutic applicability of this natural immunomodulator, due to its ability to counteract macrophage inflammatory and T cell-activating pathways.
Diabetes | 2014
Sofie Robert; Conny Gysemans; Tatiana Takiishi; Hannelie Korf; Isabella Spagnuolo; Guido Sebastiani; Karolien Van Huynegem; Lothar Steidler; Silvia Caluwaerts; Pieter Demetter; Clive Wasserfall; Mark A. Atkinson; Francesco Dotta; Pieter Rottiers; Tom Van Belle; Chantal Mathieu
Growing insight into the pathogenesis of type 1 diabetes (T1D) and numerous studies in preclinical models highlight the potential of antigen-specific approaches to restore tolerance efficiently and safely. Oral administration of protein antigens is a preferred method for tolerance induction, but degradation during gastrointestinal passage can impede such protein-based therapies, reducing their efficacy and making them cost-ineffective. To overcome these limitations, we generated a tolerogenic bacterial delivery technology based on live Lactococcus lactis (LL) bacteria for controlled secretion of the T1D autoantigen GAD65370–575 and the anti-inflammatory cytokine interleukin-10 in the gut. In combination with short-course low-dose anti-CD3, this treatment stabilized insulitis, preserved functional β-cell mass, and restored normoglycemia in recent-onset NOD mice, even when hyperglycemia was severe at diagnosis. Combination therapy did not eliminate pathogenic effector T cells, but increased the presence of functional CD4+Foxp3+CD25+ regulatory T cells. These preclinical data indicate a great therapeutic potential of orally administered autoantigen-secreting LL for tolerance induction in T1D.
Journal of Immunology | 2014
Gabriela B Ferreira; Conny Gysemans; Jocelyne Demengeot; João Paulo Monteiro Carvalho Mori Cunha; An-Sofie Vanherwegen; Lut Overbergh; Tom Van Belle; Femke Pauwels; Annemieke Verstuyf; Hannelie Korf; Chantal Mathieu
The biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is able to promote the generation of tolerogenic mature dendritic cells (mDCs) with an impaired ability to activate autoreactive T cells. These cells could represent a reliable tool for the promotion or restoration of Ag-specific tolerance through vaccination strategies, for example in type 1 diabetes patients. However, successful transfer of 1,25(OH)2D3-treated mDCs (1,25D3-mDCs) depends on the capacity of 1,25(OH)2D3 to imprint a similar tolerogenic profile in cells derived from diabetes-prone donors as from diabetes-resistant donors. In this study, we examined the impact of 1,25(OH)2D3 on the function and phenotype of mDCs originating from healthy (C57BL/6) and diabetes-prone (NOD) mice. We show that 1,25(OH)2D3 is able to imprint a phenotypic tolerogenic profile on DCs derived from both mouse strains. Both NOD- and C57BL/6-derived 1,25D3-mDCs decreased the proliferation and activation of autoreactive T cells in vitro, despite strain differences in the regulation of cytokine/chemokine expression. In addition, 1,25D3-mDCs from diabetes-prone mice expanded CD25+Foxp3+ regulatory T cells and induced intracellular IL-10 production by T cells in vitro. Furthermore, 1,25D3-mDCs exhibited an intact functional migratory capacity in vivo that favors homing to the liver and pancreas of adult NOD mice. More importantly, when cotransferred with activated CD4+ T cells into NOD.SCID recipients, 1,25D3-mDCs potently dampened the proliferation of autoreactive donor T cells in the pancreatic draining lymph nodes. Altogether, these results argue for the potential of 1,25D3-mDCs to restore Ag-specific immune tolerance and arrest autoimmune disease progression in vivo.