Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannes Kollist is active.

Publication


Featured researches published by Hannes Kollist.


Nature | 2008

SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling.

Triin Vahisalu; Hannes Kollist; Yong-Fei Wang; Wai-Yin Chan; Gabriel Valerio; Airi Lamminmäki; Mikael Brosché; Heino Moldau; Radhika Desikan; Julian I. Schroeder; Jaakko Kangasjärvi

Stomatal pores, formed by two surrounding guard cells in the epidermis of plant leaves, allow influx of atmospheric carbon dioxide in exchange for transpirational water loss. Stomata also restrict the entry of ozone — an important air pollutant that has an increasingly negative impact on crop yields, and thus global carbon fixation and climate change. The aperture of stomatal pores is regulated by the transport of osmotically active ions and metabolites across guard cell membranes. Despite the vital role of guard cells in controlling plant water loss, ozone sensitivity and CO2 supply, the genes encoding some of the main regulators of stomatal movements remain unknown. It has been proposed that guard cell anion channels function as important regulators of stomatal closure and are essential in mediating stomatal responses to physiological and stress stimuli. However, the genes encoding membrane proteins that mediate guard cell anion efflux have not yet been identified. Here we report the mapping and characterization of an ozone-sensitive Arabidopsis thaliana mutant, slac1. We show that SLAC1 (SLOW ANION CHANNEL-ASSOCIATED 1) is preferentially expressed in guard cells and encodes a distant homologue of fungal and bacterial dicarboxylate/malic acid transport proteins. The plasma membrane protein SLAC1 is essential for stomatal closure in response to CO2, abscisic acid, ozone, light/dark transitions, humidity change, calcium ions, hydrogen peroxide and nitric oxide. Mutations in SLAC1 impair slow (S-type) anion channel currents that are activated by cytosolic Ca2+ and abscisic acid, but do not affect rapid (R-type) anion channel currents or Ca2+ channel function. A low homology of SLAC1 to bacterial and fungal organic acid transport proteins, and the permeability of S-type anion channels to malate suggest a vital role for SLAC1 in the function of S-type anion channels.


The Plant Cell | 2012

Arabidopsis PYR/PYL/RCAR Receptors Play a Major Role in Quantitative Regulation of Stomatal Aperture and Transcriptional Response to Abscisic Acid

Miguel González-Guzmán; Gaston A. Pizzio; Regina Antoni; Francisco Vera-Sirera; Ebe Merilo; George W. Bassel; Maria A. Fernandez; Michael J. Holdsworth; Miguel A. Perez-Amador; Hannes Kollist; Pedro L. Rodriguez

A mutant lacking six abscisic acid (ABA) receptors and ABA-mediated activation of SnRK2.2/2.3/2.6 kinases shows an extreme ABA-insensitive phenotype, even though other branches for ABA perception remain functional. ABA perception through PYR/PYL/RCAR receptors plays a major role in regulating seed germination and establishment, vegetative and reproductive growth, stomatal aperture, and transcriptional response to ABA. Abscisic acid (ABA) is a key hormone for plant growth, development, and stress adaptation. Perception of ABA through four types of receptors has been reported. We show here that impairment of ABA perception through the PYRABACTIN RESISTANCE1 (PYR1)/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS (RCAR) branch reduces vegetative growth and seed production and leads to a severe open stomata and ABA-insensitive phenotype, even though other branches for ABA perception remain functional. An Arabidopsis thaliana sextuple mutant impaired in six PYR/PYL receptors, namely PYR1, PYL1, PYL2, PYL4, PYL5, and PYL8, was able to germinate and grow even on 100 μM ABA. Whole-rosette stomatal conductance (Gst) measurements revealed that leaf transpiration in the sextuple pyr/pyl mutant was higher than in the ABA-deficient aba3-1 or ABA-insensitive snrk2.6 mutants. The gradually increasing Gst values of plants lacking three, four, five, and six PYR/PYLs indicate quantitative regulation of stomatal aperture by this family of receptors. The sextuple mutant lacked ABA-mediated activation of SnRK2s, and ABA-responsive gene expression was dramatically impaired as was reported in snrk2.2/2.3/2.6. In summary, these results show that ABA perception by PYR/PYLs plays a major role in regulation of seed germination and establishment, basal ABA signaling required for vegetative and reproductive growth, stomatal aperture, and transcriptional response to the hormone.


Plant Journal | 2010

Ozone-triggered rapid stomatal response involves the production of reactive oxygen species, and is controlled by SLAC1 and OST1.

Triin Vahisalu; Irina Puzõrjova; Mikael Brosché; Ervin Valk; Martin Lepiku; Heino Moldau; Priit Pechter; Yuh-Shuh Wang; Ove Lindgren; Jarkko Salojärvi; Mart Loog; Jaakko Kangasjärvi; Hannes Kollist

The air pollutant ozone can be used as a tool to unravel in planta processes induced by reactive oxygen species (ROS). Here, we have utilized ozone to study ROS-dependent stomatal signaling. We show that the ozone-triggered rapid transient decrease (RTD) in stomatal conductance coincided with a burst of ROS in guard cells. RTD was present in 11 different Arabidopsis ecotypes, suggesting that it is a genetically robust response. To study which signaling components or ion channels were involved in RTD, we tested 44 mutants deficient in various aspects of stomatal function. This revealed that the SLAC1 protein, essential for guard cell plasma membrane S-type anion channel function, and the protein kinase OST1 were required for the ROS-induced fast stomatal closure. We showed a physical interaction between OST1 and SLAC1, and provide evidence that SLAC1 is phosphorylated by OST1. Phosphoproteomic experiments indicated that OST1 phosphorylated multiple amino acids in the N terminus of SLAC1. Using TILLING we identified three new slac1 alleles where predicted phosphosites were mutated. The lack of RTD in two of them, slac1-7 (S120F) and slac1-8 (S146F), suggested that these serine residues were important for the activation of SLAC1. Mass-spectrometry analysis combined with site-directed mutagenesis and phosphorylation assays, however, showed that only S120 was a specific phosphorylation site for OST1. The absence of the RTD in the dominant-negative mutants abi1-1 and abi2-1 also suggested a regulatory role for the protein phosphatases ABI1 and ABI2 in the ROS-induced activation of the S-type anion channel.


The Plant Cell | 2004

Arabidopsis RADICAL-INDUCED CELL DEATH1 Belongs to the WWE Protein–Protein Interaction Domain Protein Family and Modulates Abscisic Acid, Ethylene, and Methyl Jasmonate Responses

Reetta Ahlfors; Saara Lång; Kirk Overmyer; Pinja Jaspers; Mikael Brosché; Airi A. Tauriainen; Hannes Kollist; Hannele Tuominen; Enric Belles-Boix; Mirva Piippo; Dirk Inzé; E. Tapio Palva; Jaakko Kangasjärvi

Experiments with several Arabidopsis thaliana mutants have revealed a web of interactions between hormonal signaling. Here, we show that the Arabidopsis mutant radical-induced cell death1 (rcd1), although hypersensitive to apoplastic superoxide and ozone, is more resistant to chloroplastic superoxide formation, exhibits reduced sensitivity to abscisic acid, ethylene, and methyl jasmonate, and has altered expression of several hormonally regulated genes. Furthermore, rcd1 has higher stomatal conductance than the wild type. The rcd1-1 mutation was mapped to the gene At1g32230 where it disrupts an intron splice site resulting in a truncated protein. RCD1 belongs to the (ADP-ribosyl)transferase domain–containing subfamily of the WWE protein–protein interaction domain protein family. The results suggest that RCD1 could act as an integrative node in hormonal signaling and in the regulation of several stress-responsive genes.


Plant Journal | 2009

Nitric oxide modulates ozone-induced cell death, hormone biosynthesis and gene expression in Arabidopsis thaliana

Reetta Ahlfors; Mikael Brosché; Hannes Kollist; Jaakko Kangasjärvi

Nitric oxide (NO) is involved together with reactive oxygen species (ROS) in the activation of various stress responses in plants. We have used ozone (O₃) as a tool to elicit ROS-activated stress responses, and to activate cell death in plant leaves. Here, we have investigated the roles and interactions of ROS and NO in the induction and regulation of O₃-induced cell death. Treatment with O₃ induced a rapid accumulation of NO, which started from guard cells, spread to adjacent epidermal cells and eventually moved to mesophyll cells. During the later time points, NO production coincided with the formation of hypersensitive response (HR)-like lesions. The NO donor sodium nitroprusside (SNP) and O₃ individually induced a large set of defence-related genes; however, in a combined treatment SNP attenuated the O₃ induction of salicylic acid (SA) biosynthesis and other defence-related genes. Consistent with this, SNP treatment also decreased O₃-induced SA accumulation. The O₃-sensitive mutant rcd1 was found to be an NO overproducer; in contrast, Atnoa1/rif1 (Arabidopsis nitric oxide associated 1/resistant to inhibition by FSM1), a mutant with decreased production of NO, was also O₃ sensitive. This, together with experiments combining O₃ and the NO donor SNP suggested that NO can modify signalling, hormone biosynthesis and gene expression in plants during O₃ exposure, and that a functional NO production is needed for a proper O₃ response. In summary, NO is an important signalling molecule in the response to O₃.


New Phytologist | 2014

Closing gaps: linking elements that control stomatal movement

Hannes Kollist; Maris Nuhkat; M. Rob G. Roelfsema

Stomata are an attractive experimental system in plant biology, because the responses of guard cells to environmental signals can be directly linked to changes in the aperture of stomatal pores. In this review, the mechanics of stomatal movement are discussed in relation to ion transport in guard cells. Emphasis is placed on the ion pumps, transporters, and channels in the plasma membrane, as well as in the vacuolar membrane. The biophysical properties of transport proteins for H(+), K(+), Ca(2+), and anions are discussed and related to their function in guard cells during stomatal movements. Guard cell signaling pathways for ABA, CO2, ozone, microbe-associated molecular patterns (MAMPs) and blue light are presented. Special attention is given to the regulation of the slow anion channel (SLAC) and SLAC homolog (SLAH)-type anion channels by the ABA signalosome. Over the last decade, several knowledge gaps in the regulation of ion transport in guard cells have been closed. The current state of knowledge is an excellent starting point for tackling important open questions concerning stress tolerance in plants.


The EMBO Journal | 2011

Central functions of bicarbonate in S-type anion channel activation and OST1 protein kinase in CO2 signal transduction in guard cell

Shaowu Xue; Honghong Hu; Amber Ries; Ebe Merilo; Hannes Kollist; Julian I. Schroeder

Plants respond to elevated CO2 via carbonic anhydrases that mediate stomatal closing, but little is known about the early signalling mechanisms following the initial CO2 response. It remains unclear whether CO2, HCO3− or a combination activates downstream signalling. Here, we demonstrate that bicarbonate functions as a small‐molecule activator of SLAC1 anion channels in guard cells. Elevated intracellular [HCO3−]i with low [CO2] and [H+] activated S‐type anion currents, whereas low [HCO3−]i at high [CO2] and [H+] did not. Bicarbonate enhanced the intracellular Ca2+ sensitivity of S‐type anion channel activation in wild‐type and ht1‐2 kinase mutant guard cells. ht1‐2 mutant guard cells exhibited enhanced bicarbonate sensitivity of S‐type anion channel activation. The OST1 protein kinase has been reported not to affect CO2 signalling. Unexpectedly, OST1 loss‐of‐function alleles showed strongly impaired CO2‐induced stomatal closing and HCO3− activation of anion channels. Moreover, PYR/RCAR abscisic acid (ABA) receptor mutants slowed but did not abolish CO2/HCO3− signalling, redefining the convergence point of CO2 and ABA signalling. A new working model of the sequence of CO2 signalling events in gas exchange regulation is presented.


Plant Physiology | 2013

PYR/RCAR Receptors Contribute to Ozone-, Reduced Air Humidity-, Darkness-, and CO2-Induced Stomatal Regulation

Ebe Merilo; Kristiina Laanemets; Honghong Hu; Shaowu Xue; Liina Jakobson; Ingmar Tulva; Miguel González-Guzmán; Pedro L. Rodriguez; Julian I. Schroeder; Mikael Broschè; Hannes Kollist

Signaling through abscisic acid PYR/RCAR receptors plays a fundamental role in controlling whole-plant stomatal conductance and affects stomatal closure in response to low air humidity, darkness, O3, and elevated CO2. Rapid stomatal closure induced by changes in the environment, such as elevation of CO2, reduction of air humidity, darkness, and pulses of the air pollutant ozone (O3), involves the SLOW ANION CHANNEL1 (SLAC1). SLAC1 is activated by OPEN STOMATA1 (OST1) and Ca2+-dependent protein kinases. OST1 activation is controlled through abscisic acid (ABA)-induced inhibition of type 2 protein phosphatases (PP2C) by PYRABACTIN RESISTANCE/REGULATORY COMPONENTS OF ABA RECEPTOR (PYR/RCAR) receptor proteins. To address the role of signaling through PYR/RCARs for whole-plant steady-state stomatal conductance and stomatal closure induced by environmental factors, we used a set of Arabidopsis (Arabidopsis thaliana) mutants defective in ABA metabolism/signaling. The stomatal conductance values varied severalfold among the studied mutants, indicating that basal ABA signaling through PYR/RCAR receptors plays a fundamental role in controlling whole-plant water loss through stomata. PYR/RCAR-dependent inhibition of PP2Cs was clearly required for rapid stomatal regulation in response to darkness, reduced air humidity, and O3. Furthermore, PYR/RCAR proteins seem to function in a dose-dependent manner, and there is a functional diversity among them. Although a rapid stomatal response to elevated CO2 was evident in all but slac1 and ost1 mutants, the bicarbonate-induced activation of S-type anion channels was reduced in the dominant active PP2C mutants abi1-1 and abi2-1. Further experiments with a wider range of CO2 concentrations and analyses of stomatal response kinetics suggested that the ABA signalosome partially affects the CO2-induced stomatal response. Thus, we show that PYR/RCAR receptors play an important role for the whole-plant stomatal adjustments and responses to low humidity, darkness, and O3 and are involved in responses to elevated CO2.


New Phytologist | 2013

Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomatal aperture in Arabidopsis

Jing Li; Sébastien Besseau; Petri Törönen; Nina Sipari; Hannes Kollist; Liisa Holm; E. Tapio Palva

WRKY transcription factors (TFs) have been mainly associated with plant defense, but recent studies have suggested additional roles in the regulation of other physiological processes. Here, we explored the possible contribution of two related group III WRKY TFs, WRKY70 and WRKY54, to osmotic stress tolerance. These TFs are positive regulators of plant defense, and co-operate as negative regulators of salicylic acid (SA) biosynthesis and senescence. We employed single and double mutants of wrky54 and wrky70, as well as a WRKY70 overexpressor line, to explore the role of these TFs in osmotic stress (polyethylene glycol) responses. Their effect on gene expression was characterized by microarrays and verified by quantitative PCR. Stomatal phenotypes were assessed by water retention and stomatal conductance measurements. The wrky54wrky70 double mutants exhibited clearly enhanced tolerance to osmotic stress. However, gene expression analysis showed reduced induction of osmotic stress-responsive genes in addition to reduced accumulation of the osmoprotectant proline. By contrast, the enhanced tolerance was correlated with improved water retention and enhanced stomatal closure. These findings demonstrate that WRKY70 and WRKY54 co-operate as negative regulators of stomatal closure and, consequently, osmotic stress tolerance in Arabidopsis, suggesting that they have an important role, not only in plant defense, but also in abiotic stress signaling.


Plant Physiology | 2013

The PYL4 A194T mutant uncovers a key role of PYR1-LIKE4/PROTEIN PHOSPHATASE 2CA interaction for abscisic acid signaling and plant drought resistance.

Gaston A. Pizzio; Lesia Rodriguez; Regina Antoni; Miguel González-Guzmán; Cristina Yunta; Ebe Merilo; Hannes Kollist; Armando Albert; Pedro L. Rodriguez

Enhanced drought resistance through mutagenesis of an ABA receptor is associated with enhanced interaction with its protein phosphatase binding partner. Because abscisic acid (ABA) is recognized as the critical hormonal regulator of plant stress physiology, elucidating its signaling pathway has raised promise for application in agriculture, for instance through genetic engineering of ABA receptors. PYRABACTIN RESISTANCE1/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS ABA receptors interact with high affinity and inhibit clade A phosphatases type-2C (PP2Cs) in an ABA-dependent manner. We generated an allele library composed of 10,000 mutant clones of Arabidopsis (Arabidopsis thaliana) PYL4 and selected mutations that promoted ABA-independent interaction with PP2CA/ABA-HYPERSENSITIVE3. In vitro protein-protein interaction assays and size exclusion chromatography confirmed that PYL4A194T was able to form stable complexes with PP2CA in the absence of ABA, in contrast to PYL4. This interaction did not lead to significant inhibition of PP2CA in the absence of ABA; however, it improved ABA-dependent inhibition of PP2CA. As a result, 35S:PYL4A194T plants showed enhanced sensitivity to ABA-mediated inhibition of germination and seedling establishment compared with 35S:PYL4 plants. Additionally, at basal endogenous ABA levels, whole-rosette gas exchange measurements revealed reduced stomatal conductance and enhanced water use efficiency compared with nontransformed or 35S:PYL4 plants and partial up-regulation of two ABA-responsive genes. Finally, 35S:PYL4A194T plants showed enhanced drought and dehydration resistance compared with nontransformed or 35S:PYL4 plants. Thus, we describe a novel approach to enhance plant drought resistance through allele library generation and engineering of a PYL4 mutation that enhances interaction with PP2CA.

Collaboration


Dive into the Hannes Kollist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge