Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hannes Sigrist is active.

Publication


Featured researches published by Hannes Sigrist.


Neuropharmacology | 2014

Mouse social stress induces increased fear conditioning, helplessness and fatigue to physical challenge together with markers of altered immune and dopamine function

Damiano Azzinnari; Hannes Sigrist; Simon Staehli; Rupert Palme; Tobias Hildebrandt; German Leparc; Bastian Hengerer; Erich Seifritz; Christopher R. Pryce

In neuropsychiatry, animal studies demonstrating causal effects of environmental manipulations relevant to human aetiology on behaviours relevant to human psychopathologies are valuable. Such valid models can improve understanding of aetio-pathophysiology and preclinical discovery and development of new treatments. In depression, specific uncontrollable stressful life events are major aetiological factors, and subsequent generalized increases in fearfulness, helplessness and fatigue are core symptoms or features. Here we exposed adult male C57BL/6 mice to 15-day psychosocial stress with loss of social control but minimal physical wounding. One cohort was assessed in a 3-day test paradigm of motor activity, fear conditioning and 2-way avoid-escape behaviour on days 16-18, and a second cohort was assessed in a treadmill fatigue paradigm on days 19 and 29, followed by the 3-day paradigm on days 30-32. All tests used a physical aversive stimulus, namely mild, brief electroshocks. Socially stressed mice displayed decreased motor activity, increased fear acquisition, decreased 2-way avoid-escape responding (increased helplessness) and increased fatigue. They also displayed increased plasma TNF and spleen hypertrophy, and adrenal hypertrophy without hyper-corticoidism. In a third cohort, psychosocial stress effects on brain gene expression were assessed using next generation sequencing. Gene expression was altered in pathways of inflammation and G-protein coupled receptors in prefrontal cortex and amygdala; in the latter, expression of genes important in dopamine function were de-regulated including down-regulated Drd2, Adora2a and Darpp-32. This model can be applied to identify targets for treating psychopathologies such as helplessness or fatigue, and to screen compounds/biologics developed to act at these targets.


Brain Behavior and Immunity | 2016

Mouse chronic social stress increases blood and brain kynurenine pathway activity and fear behaviour: Both effects are reversed by inhibition of indoleamine 2,3-dioxygenase

René Fuertig; Damiano Azzinnari; Giorgio Bergamini; Flurin Cathomas; Hannes Sigrist; Erich Seifritz; Stefano Vavassori; Andreas H. Luippold; Bastian Hengerer; Angelo Ceci; Christopher R. Pryce

Psychosocial stress is a major risk factor for mood and anxiety disorders, in which excessive reactivity to aversive events/stimuli is a major psychopathology. In terms of pathophysiology, immune-inflammation is an important candidate, including high blood and brain levels of metabolites belonging to the kynurenine pathway. Animal models are needed to study causality between psychosocial stress, immune-inflammation and hyper-reactivity to aversive stimuli. The present mouse study investigated effects of psychosocial stress as chronic social defeat (CSD) versus control-handling (CON) on: Pavlovian tone-shock fear conditioning, activation of the kynurenine pathway, and efficacy of a specific inhibitor (IDOInh) of the tryptophan-kynurenine catabolising enzyme indoleamine 2,3-dioxygenase (IDO1), in reversing CSD effects on the kynurenine pathway and fear. CSD led to excessive fear learning and memory, whilst repeated oral escitalopram (antidepressant and anxiolytic) reversed excessive fear memory, indicating predictive validity of the model. CSD led to higher blood levels of TNF-α, IFN-γ, kynurenine (KYN), 3-hydroxykynurenine (3-HK) and kynurenic acid, and higher KYN and 3-HK in amygdala and hippocampus. CSD was without effect on IDO1 gene or protein expression in spleen, ileum and liver, whilst increasing liver TDO2 gene expression. Nonetheless, oral IDOInh reduced blood and brain levels of KYN and 3-HK in CSD mice to CON levels, and we therefore infer that CSD increases IDO1 activity by increasing its post-translational activation. Furthermore, repeated oral IDOInh reversed excessive fear memory in CSD mice to CON levels. IDOInh reversal of CSD-induced hyper-activity in the kynurenine pathway and fear system contributes significantly to the evidence for a causal pathway between psychosocial stress, immune-inflammation and the excessive fearfulness that is a major psychopathology in stress-related neuropsychiatric disorders.


Neuropharmacology | 2012

Establishing a probabilistic reversal learning test in mice: Evidence for the processes mediating reward-stay and punishment-shift behaviour and for their modulation by serotonin

Christian Ineichen; Hannes Sigrist; Simona Spinelli; Klaus-Peter Lesch; Eva Sautter; Erich Seifritz; Christopher R. Pryce

Valid animal models of psychopathology need to include behavioural readouts informed by human findings. In the probabilistic reversal learning (PRL) task, human subjects are confronted with serial reversal of the contingency between two operant stimuli and reward/punishment and, superimposed on this, a low probability (0.2) of punished correct responses/rewarded incorrect responses. In depression, reward-stay and reversals completed are unaffected but response-shift following punished correct response trials, referred to as negative feedback sensitivity (NFS), is increased. The aims of this study were to: establish an operant spatial PRL test appropriate for mice; obtain evidence for the processes mediating reward-stay and punishment-shift responding; and assess effects thereon of genetically- and pharmacologically-altered serotonin (5-HT) function. The study was conducted with wildtype (WT) and heterozygous mutant (HET) mice from a 5-HT transporter (5-HTT) null mutant strain. Mice were mildly food deprived and reward was sugar pellet and punishment was 5-s time out. Mice exhibited high motivation and adaptive reversal performance. Increased probability of punished correct response (PCR) trials per session (p = 0.1, 0.2 or 0.3) led to monotonic decrease in reward-stay and reversals completed, suggesting accurate reward prediction. NFS differed from chance-level at p PCR = 0.1, suggesting accurate punishment prediction, whereas NFS was at chance-level at p = 0.2-0.3. At p PCR = 0.1, HET mice exhibited lower NFS than WT mice. The 5-HTT blocker escitalopram was studied acutely at p PCR = 0.2: a low dose (0.5-1.5 mg/kg) resulted in decreased NFS, increased reward-stay and increased reversals completed, and similarly in WT and HET mice. This study demonstrates that testing PRL in mice can provide evidence on the regulation of reward and punishment processing that is, albeit within certain limits, of relevance to human emotional-cognitive processing, its dysfunction and treatment.


Translational Psychiatry | 2015

Altered emotionality and neuronal excitability in mice lacking KCTD12, an auxiliary subunit of GABAB receptors associated with mood disorders

Flurin Cathomas; M Stegen; Hannes Sigrist; Linda Schmid; Erich Seifritz; Martin Gassmann; Bernhard Bettler; Christopher R. Pryce

Gamma-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the brain, is fundamental to brain function and implicated in the pathophysiology of several neuropsychiatric disorders. GABA activates G-protein-coupled GABAB receptors comprising principal GABAB1 and GABAB2 subunits as well as auxiliary KCTD8, 12, 12b and 16 subunits. The KCTD12 gene has been associated with bipolar disorder, major depressive disorder and schizophrenia. Here we compare Kctd12 null mutant (Kctd12−/−) and heterozygous (Kctd12+/−) with wild-type (WT) littermate mice to determine whether lack of or reduced KCTD12 expression leads to phenotypes that, extrapolating to human, could constitute endophenotypes for neuropsychiatric disorders with which KCTD12 is associated. Kctd12−/− mice exhibited increased fear learning but not increased memory of a discrete auditory-conditioned stimulus. Kctd12+/− mice showed increased activity during the inactive (light) phase of the circadian cycle relative to WT and Kctd12−/− mice. Electrophysiological recordings from hippocampal slices, a region of high Kctd12 expression, revealed an increased intrinsic excitability of pyramidal neurons in Kctd12−/− and Kctd12+/− mice. This is the first direct evidence for involvement of KCTD12 in determining phenotypes of emotionality, behavioral activity and neuronal excitability. This study provides empirical support for the polymorphism and expression evidence that KCTD12 confers risk for and is associated with neuropsychiatric disorders.


European Neuropsychopharmacology | 2016

Mouse psychosocial stress reduces motivation and cognitive function in operant reward tests: A model for reward pathology with effects of agomelatine.

Giorgio Bergamini; Flurin Cathomas; Sandra Auer; Hannes Sigrist; Erich Seifritz; Michael Patterson; Cecilia Gabriel; Christopher R. Pryce

A major domain of depression is decreased motivation for reward. Translational automated tests can be applied in humans and animals to study operant reward behaviour, aetio-pathophysiology underlying deficits therein, and effects of antidepressant treatment. Three inter-related experiments were conducted to investigate depression-relevant effects of chronic psychosocial stress on operant behaviour in mice. (A) Non-manipulated mice were trained on a complex reversal learning (CRL) test with sucrose reinforcement; relative to vehicle (VEH), acute antidepressant agomelatine (AGO, 25mg/kg p.o.) increased reversals. (B) Mice underwent chronic social defeat (CSD) or control handling (CON) on days 1-15, and were administered AGO or VEH on days 10-22. In a progressive ratio schedule motivation test for sucrose on day 15, CSD mice made fewer responses; AGO tended to reverse this effect. In a CRL test on day 22, CSD mice completed fewer reversals; AGO tended to increase reversals in CSD mice associated with an adaptive increase in perseveration


Brain Behavior and Immunity | 2015

CD40-TNF activation in mice induces extended sickness behavior syndrome co-incident with but not dependent on activation of the kynurenine pathway

Flurin Cathomas; René Fuertig; Hannes Sigrist; Gregory N. Newman; Vanessa Hoop; Manuela Bizzozzero; Andreas D. Mueller; Andreas H. Luippold; Angelo Ceci; Bastian Hengerer; Erich Seifritz; Adriano Fontana; Christopher R. Pryce

The similarity between sickness behavior syndrome (SBS) in infection and autoimmune disorders and certain symptoms in major depressive disorder (MDD), and the high co-morbidity of autoimmune disorders and MDD, constitutes some of the major evidence for the immune-inflammation hypothesis of MDD. CD40 ligand-CD40 immune-activation is important in host response to infection and in development of autoimmunity. Mice given a single intra-peritoneal injection of CD40 agonist antibody (CD40AB) develop SBS for 2-3days characterized by weight loss and increased sleep, effects that are dependent on the cytokine, tumor necrosis factor (TNF). Here we report that CD40AB also induces behavioral effects that extend beyond acute SBS and co-occur with but are not mediated by kynurenine pathway activation and recovery. CD40AB led to decreased saccharin drinking (days 1-7) and decreased Pavlovian fear conditioning (days 5-6), and was without effect on physical fatigue (day 5). These behavioral effects co-occurred with increased plasma and brain levels of kynurenine and its metabolites (days 1-7/8). Co-injection of TNF blocker etanercept with CD40AB prevented each of SBS, reduced saccharin drinking, and kynurenine pathway activation in plasma and brain. Repeated oral administration of a selective indoleamine 2,3-dioxygenase (IDO) inhibitor blocked activation of the kynurenine pathway but was without effect on SBS and saccharin drinking. This study provides novel evidence that CD40-TNF activation induces deficits in saccharin drinking and Pavlovian fear learning and activates the kynurenine pathway, and that CD40-TNF activation of the kynurenine pathway is not necessary for induction of the acute or extended SBS effects.


Brain Behavior and Immunity | 2016

Differential effects of peripheral and brain tumor necrosis factor on inflammation, sickness, emotional behavior and memory in mice.

Federica Klaus; Jean-Charles Paterna; Elisa Marzorati; Hannes Sigrist; Lea Götze; Severin Schwendener; Giorgio Bergamini; Elisabeth Jehli; Damiano Azzinnari; René Fuertig; Adriano Fontana; Erich Seifritz; Christopher R. Pryce

Tumor necrosis factor alpha (TNF) is increased in depression and clinical-trial evidence indicates that blocking peripheral TNF has some antidepressant efficacy. In rodents, peripheral or intracerebroventricular TNF results in sickness e.g. reduced body weight, altered emotional behavior and impaired memory. However, the underlying pathways and responsible brain regions are poorly understood. The aim of this mouse study was to increase understanding by comparing the effects of sustained increases in TNF in the circulation, in brain regions impacted by increased circulating TNF, or specific brain regions. Increased peripheral TNF achieved by repeated daily injection (IP-TNF) or osmotic pump resulted in decreased body weight, decreased saccharin (reward) consumption, and increased memory of an aversive conditioned stimulus. These effects co-occurred with increased plasma interleukin-6 and increased IP-derived TNF in brain peri-ventricular regions. An adenovirus-associated viral TNF vector (AAV-TNF) was constructed, brain injection of which resulted in dose-dependent, sustained and region-specific TNF expression, and was without effect on blood cytokine levels. Lateral ventricle AAV-TNF yielded increased TNF in the same brain regions as IP-TNF. In contrast to IP-TNF it was without effect on body weight, saccharin consumption and fear memory, although it did increase anxiety. Hippocampal AAV-TNF led to decreased body weight. It increased conditioning to but not subsequent memory of an aversive context, suggesting impaired consolidation; it also increased anxiety. Amygdala AAV-TNF was without effect on body weight and aversive stimulus learning-memory, but reduced saccharin consumption and increased anxiety. This study adds significantly to the evidence that both peripheral and brain region-specific increases in TNF lead to both sickness and depression- and anxiety disorder-relevant behavior and do so via different pathways. It thereby highlights the complexity in terms of indirect and direct pathways via which increased TNF can act and which need to be taken into account when considering it as a therapeutic target.


Frontiers in Behavioral Neuroscience | 2013

Effects of repeated adolescent stress and serotonin transporter gene partial knockout in mice on behaviors and brain structures relevant to major depression.

Simona Spinelli; Tanja Müller; Miriam Friedel; Hannes Sigrist; Klaus-Peter Lesch; R. Mark Henkelman; Markus Rudin; Erich Seifritz; Christopher R. Pryce

In humans, exposure to stress during development is associated with structural and functional alterations of the prefrontal cortex (PFC), amygdala (AMY), and hippocampus (HC) and their circuits of connectivity, and with an increased risk for developing major depressive disorder particularly in carriers of the short (s) variant of the serotonin transporter (5-HTT) gene-linked polymorphic region (5-HTTLPR). Although changes in these regions are found in carriers of the s allele and/or in depressed patients, evidence for a specific genotype × developmental stress effect on brain structure and function is limited. Here, we investigated the effect of repeated stress exposure during adolescence in mice with partial knockout of the 5-HTT gene (HET) vs. wildtype (WT) on early-adulthood behavioral measures and brain structure [using magnetic resonance imaging (MRI)] relevant to human major depression. Behaviorally, adolescent stress (AS) increased anxiety and decreased activity and did so to a similar degree in HET and WT. In a probabilistic reversal learning task, HET-AS mice achieved fewer reversals than did HET-No-AS mice. 5-HTT genotype and AS were without effect on corticosterone stress response. In terms of structural brain differences, AS reduced the volume of two long-range white matter tracts, the optic tract (OT) and the cerebral peduncle (CP), in WT mice specifically. In a region-of-interest analysis, AS was associated with increased HC volume and HET genotype with a decreased frontal lobe volume. In conclusion, we found that 5-HTT and AS genotype exerted long-term effects on behavior and development of brain regions relevant to human depression.


Behavioural Brain Research | 2017

Behavioural endophenotypes in mice lacking the auxiliary GABAB receptor subunit KCTD16

Flurin Cathomas; Hannes Sigrist; Luca Schmid; Erich Seifritz; Martin Gassmann; Bernhard Bettler; Christopher R. Pryce

HighlightsKCTD16 is one of the auxillary subunits of the GABAB receptor.Kctd16 knockout mice exhibit increased contextual fear memory.Kctd16 knockout mice exhibit attenuated CS fear memory extinction.KCTD16 contributes to the GABAB‐regulation of emotional memories. ABSTRACT Gamma‐aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the brain and is implicated in the pathophysiology of a number of neuropsychiatric disorders. The GABAB receptors are G‐protein coupled receptors consisting of principle subunits and auxiliary potassium channel tetramerization domain (KCTD) subunits. The KCTD subunits 8, 12, 12b and 16 are cytosolic proteins that determine the kinetics of the GABAB receptor response. Previously, we demonstrated that Kctd12 null mutant mice (Kctd12−/−) exhibit increased auditory fear learning and that Kctd12+/− mice show altered circadian activity, as well as increased intrinsic excitability in hippocampal pyramidal neurons. KCTD16 has been demonstrated to influence neuronal excitability by regulating GABAB receptor‐mediated gating of postsynaptic ion channels. In the present study we investigated for behavioural endophenotypes in Kctd16−/− and Kctd16+/− mice. Compared with wild‐type (WT) littermates, auditory and contextual fear conditioning were normal in both Kctd16−/− and Kctd16+/− mice. When fear memory was tested on the following day, Kctd16−/− mice exhibited less extinction of auditory fear memory relative to WT and Kctd16+/− mice, as well as more contextual fear memory relative to WT and, in particular, Kctd16+/− mice. Relative to WT, both Kctd16+/− and Kctd16−/− mice exhibited normal circadian activity. This study adds to the evidence that auxillary KCTD subunits of GABAB receptors contribute to the regulation of behaviours that could constitute endophenotypes for hyper‐reactivity to aversive stimuli in neuropsychiatric disorders.


Neurobiology of Stress | 2018

Chronic social stress induces peripheral and central immune activation, blunted mesolimbic dopamine function, and reduced reward-directed behaviour in mice

Giorgio Bergamini; Jonas Mechtersheimer; Damiano Azzinnari; Hannes Sigrist; Michaela Buerge; Robert Dallmann; Robert Freije; Alfroditi Kouraki; Jolanta Opacka-Juffry; Erich Seifritz; Boris Ferger; Tobias Suter; Christopher R. Pryce

Psychosocial stress is a major risk factor for depression, stress leads to peripheral and central immune activation, immune activation is associated with blunted dopamine (DA) neural function, DA function underlies reward interest, and reduced reward interest is a core symptom of depression. These states might be inter-independent in a complex causal pathway. Whilst animal-model evidence exists for some specific steps in the pathway, there is currently no animal model in which it has been demonstrated that social stress leads to each of these immune, neural and behavioural states. Such a model would provide important existential evidence for the complex pathway and would enable the study of causality and mediating mechanisms at specific steps in the pathway. Therefore, in the present mouse study we investigated for effects of 15-day resident-intruder chronic social stress (CSS) on each of these states. Relative to controls, CSS mice exhibited higher spleen levels of granulocytes, inflammatory monocytes and T helper 17 cells; plasma levels of inducible nitric oxide synthase; and liver expression of genes encoding kynurenine pathway enzymes. CSS led in the ventral tegmental area to higher levels of kynurenine and the microglia markers Iba1 and Cd11b and higher binding activity of DA D1 receptor; and in the nucleus accumbens (NAcc) to higher kynurenine, lower DA turnover and lower c-fos expression. Pharmacological challenge with DA reuptake inhibitor identified attenuation of DA stimulatory effects on locomotor activity and NAcc c-fos expression in CSS mice. In behavioural tests of operant responding for sucrose reward validated as sensitive assays for NAcc DA function, CSS mice exhibited less reward-directed behaviour. Therefore, this mouse study demonstrates that a chronic social stressor leads to changes in each of the immune, neural and behavioural states proposed to mediate between stress and disruption of DA-dependent reward processing. The model can now be applied to investigate causality and, if demonstrated, underlying mechanisms in specific steps of this immune-neural-behavioural pathway, and thereby to identify potential therapeutic targets.

Collaboration


Dive into the Hannes Sigrist's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge