Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans A. Bechtel is active.

Publication


Featured researches published by Hans A. Bechtel.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides

Hui Fang; Corsin Battaglia; Carlo Carraro; Slavomír Nemšák; Burak Ozdol; Jeong Seuk Kang; Hans A. Bechtel; Sujay B. Desai; Florian Kronast; Ahmet A. Ünal; Giuseppina Conti; Catherine Conlon; Gunnar K. Palsson; Michael C. Martin; Andrew M. Minor; C. S. Fadley; Eli Yablonovitch; Roya Maboudian; Ali Javey

Significance A new class of heterostructures consisting of layered transition metal dichalcogenide components can be designed and built by van der Waals (vdW) stacking of individual monolayers into functional multilayer structures. Nonetheless, the optoelectronic properties of this new type of vdW heterostructure are unknown. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe spatially direct absorption but spatially indirect emission in this heterostructure, with strong interlayer coupling of charge carriers. The coupling at the hetero-interface can be readily tuned by inserting hexagonal BN dielectric layers into the vdW gap. The generic nature of this interlayer coupling is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties through customized composite layers. Semiconductor heterostructures are the fundamental platform for many important device applications such as lasers, light-emitting diodes, solar cells, and high-electron-mobility transistors. Analogous to traditional heterostructures, layered transition metal dichalcogenide heterostructures can be designed and built by assembling individual single layers into functional multilayer structures, but in principle with atomically sharp interfaces, no interdiffusion of atoms, digitally controlled layered components, and no lattice parameter constraints. Nonetheless, the optoelectronic behavior of this new type of van der Waals (vdW) semiconductor heterostructure is unknown at the single-layer limit. Specifically, it is experimentally unknown whether the optical transitions will be spatially direct or indirect in such hetero-bilayers. Here, we investigate artificial semiconductor heterostructures built from single-layer WSe2 and MoS2. We observe a large Stokes-like shift of ∼100 meV between the photoluminescence peak and the lowest absorption peak that is consistent with a type II band alignment having spatially direct absorption but spatially indirect emission. Notably, the photoluminescence intensity of this spatially indirect transition is strong, suggesting strong interlayer coupling of charge carriers. This coupling at the hetero-interface can be readily tuned by inserting dielectric layers into the vdW gap, consisting of hexagonal BN. Consequently, the generic nature of this interlayer coupling provides a new degree of freedom in band engineering and is expected to yield a new family of semiconductor heterostructures having tunable optoelectronic properties with customized composite layers.


Physical Review B | 2011

Drude Conductivity of Dirac Fermions in Graphene

Jason Horng; Chi-Fan Chen; Baisong Geng; Caglar Girit; Yuanbo Zhang; Zhao Hao; Hans A. Bechtel; Michael C. Martin; Alex Zettl; Michael F. Crommie

Abstract : Electrons moving in graphene behave as massless Dirac fermions, and they exhibit fascinating low-frequency electrical transport phenomena. Their dynamic response, however, is little known at frequencies above one terahertz (THz). Such knowledge is important not only for a deeper understanding of the Dirac electron quantum transport, but also for graphene applications in ultrahigh speed THz electronics and IR optoelectronics. In this paper, we report the first measurement of high-frequency conductivity of graphene from THz to mid-IR at different carrier concentrations. The conductivity exhibits Drude-like frequency dependence and increases dramatically at THz frequencies, but its absolute strength is substantially lower than theoretical predictions. This anomalous reduction of free electron oscillator strength is corroborated by corresponding changes in graphene interband transitions, as required by the sum rule. Our surprising observation indicates that many-body effects and Dirac fermion-impurity interactions beyond current transport theories are important for Dirac fermion electrical response in graphene.


Nature | 2015

Topological valley transport at bilayer graphene domain walls

Long Ju; Zhiwen Shi; Nityan Nair; Yinchuan Lv; Chenhao Jin; Jairo Velasco; Claudia Ojeda-Aristizabal; Hans A. Bechtel; Michael C. Martin; Alex Zettl; James G. Analytis; Feng Wang

Electron valley, a degree of freedom that is analogous to spin, can lead to novel topological phases in bilayer graphene. A tunable bandgap can be induced in bilayer graphene by an external electric field, and such gapped bilayer graphene is predicted to be a topological insulating phase protected by no-valley mixing symmetry, featuring quantum valley Hall effects and chiral edge states. Observation of such chiral edge states, however, is challenging because inter-valley scattering is induced by atomic-scale defects at real bilayer graphene edges. Recent theoretical work has shown that domain walls between AB- and BA-stacked bilayer graphene can support protected chiral edge states of quantum valley Hall insulators. Here we report an experimental observation of ballistic (that is, with no scattering of electrons) conducting channels at bilayer graphene domain walls. We employ near-field infrared nanometre-scale microscopy (nanoscopy) to image in situ bilayer graphene layer-stacking domain walls on device substrates, and we fabricate dual-gated field effect transistors based on the domain walls. Unlike single-domain bilayer graphene, which shows gapped insulating behaviour under a vertical electrical field, bilayer graphene domain walls feature one-dimensional valley-polarized conducting channels with a ballistic length of about 400 nanometres at 4 kelvin. Such topologically protected one-dimensional chiral states at bilayer graphene domain walls open up opportunities for exploring unique topological phases and valley physics in graphene.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Ultrabroadband infrared nanospectroscopic imaging.

Hans A. Bechtel; Eric A. Muller; Robert L. Olmon; Michael C. Martin; Markus B. Raschke

Significance Through direct measurement of intrinsic vibrational and electronic modes, infrared spectroscopy provides label-free, chemical characterization of molecules and solids. The long micrometer-sized wavelength of infrared light, however, has limited the application of this widely applied spectroscopic technique to ensemble studies, preventing nanoscale spatially resolved spectroscopy of heterogeneous materials. We overcome this limitation by combining scattering-scanning near-field optical microscopy with broadband infrared synchrotron radiation. Using this synchrotron infrared nanospectroscopy (SINS) technique, we achieve spectroscopic imaging over the entire midinfrared with nanometer spatial resolution and high sensitivity. With a spatial resolution 100–1,000 times better than conventional FTIR microscopy, SINS enables the investigation of nanoscale phenomena in soft matter, even under ambient and environmental conditions that are essentially inaccessible by other techniques. Characterizing and ultimately controlling the heterogeneity underlying biomolecular functions, quantum behavior of complex matter, photonic materials, or catalysis requires large-scale spectroscopic imaging with simultaneous specificity to structure, phase, and chemical composition at nanometer spatial resolution. However, as with any ultrahigh spatial resolution microscopy technique, the associated demand for an increase in both spatial and spectral bandwidth often leads to a decrease in desired sensitivity. We overcome this limitation in infrared vibrational scattering-scanning probe near-field optical microscopy using synchrotron midinfrared radiation. Tip-enhanced localized light–matter interaction is induced by low-noise, broadband, and spatially coherent synchrotron light of high spectral irradiance, and the near-field signal is sensitively detected using heterodyne interferometric amplification. We achieve sub-40-nm spatially resolved, molecular, and phonon vibrational spectroscopic imaging, with rapid spectral acquisition, spanning the full midinfrared (700–5,000 cm−1) with few cm−1 spectral resolution. We demonstrate the performance of synchrotron infrared nanospectroscopy on semiconductor, biomineral, and protein nanostructures, providing vibrational chemical imaging with subzeptomole sensitivity.


Analytical Chemistry | 2010

Synchrotron IR Spectromicroscopy: Chemistry of Living Cells

Hoi-Ying N. Holman; Hans A. Bechtel; Zhao Hao; Michael C. Martin

Advanced analytical capabilities of synchrotron IR spectromicroscopy meet the demands of modern biological research for studying molecular reactions in individual living cells. (To listen to a podcast about this article, please go to the Analytical Chemistry multimedia page at pubs.acs.org/page/ancham/audio/index.html.).


Science | 2014

Evidence for interstellar origin of seven dust particles collected by the Stardust spacecraft

Andrew J. Westphal; Rhonda M. Stroud; Hans A. Bechtel; Frank E. Brenker; Anna L. Butterworth; G. J. Flynn; D. Frank; Zack Gainsforth; Jon K. Hillier; Frank Postberg; Alexandre S. Simionovici; Veerle J. Sterken; Larry R. Nittler; Carlton C. Allen; David P. Anderson; Asna Ansari; Sasa Bajt; Nabil Bassim; John C. Bridges; D. E. Brownlee; Mark J. Burchell; Manfred Burghammer; Hitesh Changela; Peter Cloetens; Andrew M. Davis; Ryan Doll; Christine Floss; E. Grün; Philipp R. Heck; Peter Hoppe

Can you spot a speck of space dust? NASAs Stardust spacecraft has been collecting cosmic dust: Aerogel tiles and aluminum foil sat for nearly 200 days in the interstellar dust stream before returning to Earth. Citizen scientists identified most of the 71 tracks where particles were caught in the aerogel, and scanning electron microscopy revealed 25 craterlike features where particles punched through the foil. By performing trajectory and composition analysis, Westphal et al. report that seven of the particles may have an interstellar origin. These dust particles have surprisingly diverse mineral content and structure as compared with models of interstellar dust based on previous astronomical observations. Science, this issue p. 786 Analysis of seven particles captured by aerogel and foil reveals diverse characteristics not conforming to a single model. Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.


Journal of Chemical Physics | 2004

Comparing the dynamical effects of symmetric and antisymmetric stretch excitation of methane in the Cl+CH4 reaction

Hans A. Bechtel; Jon P. Camden; Davida J. Ankeny Brown; Richard N. Zare

The effects of two nearly isoenergetic C-H stretching motions on the gas-phase reaction of atomic chlorine with methane are examined. First, a 1:4:9 mixture of Cl(2), CH(4), and He is coexpanded into a vacuum chamber. Then, either the antisymmetric stretch (nu(3)=3019 cm(-1)) of CH(4) is prepared by direct infrared absorption or the infrared-inactive symmetric stretch (nu(1)=2917 cm(-1)) of CH(4) is prepared by stimulated Raman pumping. Photolysis of Cl(2) at 355 nm generates fast Cl atoms that initiate the reaction with a collision energy of 1290+/-175 cm(-1) (0.16+/-0.02 eV). Finally, the nascent HCl or CH(3) products are detected state-specifically via resonance enhanced multiphoton ionization and separated by mass in a time-of-flight spectrometer. We find that the rovibrational distributions and state-selected differential cross sections of the HCl and CH(3) products from the two vibrationally excited reactions are nearly indistinguishable. Although Yoon et al. [J. Chem. Phys. 119, 9568 (2003)] report that the reactivities of these two different types of vibrational excitation are quite different, the present results indicate that the reactions of symmetric-stretch excited or antisymmetric-stretch excited methane with atomic chlorine follow closely related product pathways. Approximately 37% of the reaction products are formed in HCl(v=1,J) states with little rotational excitation. At low J states these products are sharply forward scattered, but become almost equally forward and backward scattered at higher J states. The remaining reaction products are formed in HCl(v=0,J) and have more rotational excitation. The HCl(v=0,J) products are predominantly back and side scattered. Measurements of the CH(3) products indicate production of a non-negligible amount of umbrella bend excited methyl radicals primarily in coincidence with the HCl(v=0,J) products. The data are consistent with a model in which the impact parameter governs the scattering dynamics.


Journal of Chemical Physics | 2004

Bond and mode selectivity in the reaction of atomic chlorine with vibrationally excited CH2D2.

Hans A. Bechtel; Zee Hwan Kim; Jon P. Camden; Richard N. Zare

The title reaction is investigated by co-expanding a mixture of Cl2 and CH2D2 into a vacuum chamber and initiating the reaction by photolyzing Cl2 with linearly polarized 355 nm light. Excitation of the first C-H overtone of CH2D2 leads to a preference for hydrogen abstraction over deuterium abstraction by at least a factor of 20, whereas excitation of the first C-D overtone of CH2D2 reverses this preference by at least a factor of 10. Reactions with CH2D2 prepared in a local mode containing two quanta in one C-H oscillator /2000>- or in a local mode containing one quantum each in two C-H oscillators /1100> lead to products with significantly different rotational, vibrational, and angular distributions, although the vibrational energy for each mode is nearly identical. The Cl+CH2D2/2000>- reaction yields methyl radical products primarily in their ground state, whereas the Cl+CH2D2/1100> reaction yields methyl radical products that are C-H stretch excited. The HCl(v=1) rotational distribution from the Cl+CH2D2/2000>- reaction is significantly hotter than the HCl(v=1) rotational distribution from the Cl+CH2D2/1100> reaction, and the HCl(v=1) differential cross-section (DCS) of the Cl+CH2D2/2000>- reaction is more broadly side scattered than the HCl(v=1) DCS of the Cl+CH2D2/1100> reaction. The results can be explained by a simple spectator model and by noting that the /2000>- mode leads to a wider cone of acceptance for the reaction than the /1100> mode. These measurements represent the first example of mode selectivity observed in a differential cross section, and they demonstrate that vibrational excitation can be used to direct the reaction pathway of the Cl+CH2D2 reaction.


Journal of Chemical Physics | 2005

Effects of C-H stretch excitation on the H+CH4 reaction.

Jon P. Camden; Hans A. Bechtel; Davida J. Ankeny Brown; Richard N. Zare

We have investigated the effects of C-H stretching excitation on the H+CH4-->CH3+H2 reaction dynamics using the photo-LOC technique. The CH3 product vibrational state and angular distribution are measured for the reaction of fast H atoms with methane excited in either the antisymmetric stretching fundamental (nu3=1) or first overtone (nu3=2) with a center-of-mass collision energy of Ecoll ranging from 1.52 to 2.20 eV. We find that vibrational excitation of the nu3=1 mode enhances the overall reaction cross section by a factor of 3.0+/-1.5 for Ecoll=1.52 eV, and this enhancement factor is approximately constant over the 1.52-2.20-eV collision energy range. A local-mode description of the CH4 stretching vibration, in which the C-H oscillators are uncoupled, is used to describe the observed state distributions. In this model, the interaction of the incident H atom with either a stretched or an unstretched C-H oscillator determines the vibrational state of the CH3 product. We also compare these results to the similar quantities obtained previously for the Cl+CH4-->CH3+HCl reaction at Ecoll=0.16 eV [Z. H. Kim, H. A. Bechtel, and R. N. Zare, J. Chem. Phys. 117, 3232 (2002); H. A. Bechtel, J. P. Camden, D. J. A. Brown, and R. N. Zare, ibid. 120, 5096 (2004)] in an attempt to elucidate the differences in reactivity for the same initially prepared vibration.


Journal of Chemical Physics | 2002

Channel-specific angular distributions of HCl and CH3 products from the reaction of atomic chlorine with stretch-excited methane

Zee Hwan Kim; Hans A. Bechtel; Richard N. Zare

A beam containing methane and molecular chlorine is expanded into a vacuum where the methane is excited with two quanta of C–H stretching (one quantum each in two of the four C–H bonds). The reaction is initiated by fast Cl atoms generated by photolysis of Cl2 at 355 nm, and the resulting CH3 and HCl products are detected in a state-specific manner using resonance-enhanced multiphoton ionization. Speed-dependent spatial anisotropies (βprod) of HCl and CH3 products allow identification of three major product channels. They are in order of importance: (a) HCl (v=0)+CH3 [ν1 (symmetric stretch) or ν3 (asymmetric stretch)=1]; (b) HCl (v=1)+CH3 [ν2(umbrella bend)=1)]; and (c) HCl (v=1)+CH3 (ν1=1). The CH3 (v=0) product cannot be detected, and the HCl (v=2) product is minor. Channels (a) and (c) proceed in a vibrationally adiabatic manner, whereas channel (b) appears to involve the nonadiabatic interaction involving the low frequency bending mode in methane that correlates to the bending mode in the methyl radic...

Collaboration


Dive into the Hans A. Bechtel's collaboration.

Top Co-Authors

Avatar

Michael C. Martin

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

D. E. Brownlee

University of Washington

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank E. Brenker

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Manfred Burghammer

European Synchrotron Radiation Facility

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Floss

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge