Hans-Åke Häggblad
Luleå University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans-Åke Häggblad.
Modelling and Simulation in Materials Science and Engineering | 1994
Hans-Åke Häggblad; Mats Oldenburg
The pressing of hard metal components is analysed with numerical methods. The analysed components are selected from produced components for which the density distribution in the material after pressing has been measured. The expected results from the analyses are the density distribution and the springback after unloading and ejection of the components. The highly non-linear quasistatic problem is analysed with the use of explicit integration of the equations of motion. A contact constraint method based on direct integration of the equations of the contact interface is used in the analyses. The contact and friction algorithms have been developed in earlier work and are further verified by analyses of a test problem that has an analytical solution. The behaviour of the powder is described by a special cap plasticity material model developed for powder applications. In one example the results obtained using the cap model are compared with results obtained with a multisurface plasticity model. The parameters of the constitutive models are fitted to triaxial experimental data through optimization methods. The presented methods are evaluated by comparing the results with experimental data from density measurements where a technique based on gamma ray absorption is used. The density distributions are qualitatively in good agreement with experimental results. The springback obtained in the simulation of unloading and ejection is in good agreement with measured values.
Powder Technology | 1991
Hans-Åke Häggblad
Abstract Constitutive models to describe the mechanical material behaviour of hardmetal powders are studied. Three classes of constitutive relationships are examined, described as cap plasticity, multisurface plasticity and endochronic plasticity. A representative model of each class is studied in detail, An optimization technique is used to fit the constitutive parameters to empirical test data on multiaxially loaded hardmetal powder specimens. Of all models tested, an endochronic model proposed by Bazant shows the best agreement with the empirical test data. Different phenomena can be simulated with the model by adding certain constitutive functions. It is, however, difficult to fit the model to test data because of the large number of model parameters, most of which have no physical meaning.
Computer Methods in Applied Mechanics and Engineering | 1997
Lars-Erik Lindgren; Hans-Åke Häggblad; J.M.J. McDill; Alan S. Oddy
Abstract Three-dimensional finite element simulation of electron beam welding of a large copper canister has been performed. The use of an automatic remeshing algorithm, based on a graded hexahedral element was found to be effective. With this algorithm the strongly nonlinear thermomechanical effects locally close to the moving heat source can accurately be modelled using a dense element mesh that follows the heat source.
Powder Metallurgy | 2002
Hans-Åke Häggblad; Mats Oldenburg
Abstract The paper presents a summary of two case studies that were carried out by the scientific team in the Thematic Network PM Modnet. During the life of this project, the compaction of complex multilevel ferrous components was investigated. These formed a vehicle to explore methods to characterise the yield and friction properties of the powder, perform simulation of the compression stage of the forming process, complete experimental trials, and compare experimental and simulated results. Density comparisons were made with results from Archimedes, quantitative metallography, and computerised tomography and force levels were compared with recordings from the pressing trials. The results highlight differences between equipment and experimental techniques used in characterising powders. They also show that hardness, metallographic analysis, and computerised tomography may be used to measure density variations throughout the compact. The prediction of density variation was reasonably consistent when using different simulations, whereas punch force prediction showed good consistency. It was found that predicted and measured density distributions agree within 0·05 to 0·5 g cm-3 and that punch force levels may be predicted within 10 to 30%. The study effectively establishes a benchmark with which to compare and improve future simulations.
Engineering Computations | 1996
Hans-Åke Häggblad; Mats Näsström
Presents a finite element formulation of hot isostatic pressing (HIP) based on a continuum approach using thermal‐elastoviscoplastic constitutive equations with compressibility. The formulation takes into consideration dependence of the viscoplastic part on the porosity. Also takes into account the thermomechanical response, including nonlinear effects in both the thermal and mechanical analyses. Implements the material model in an implicit finite element code. Presents experimental procedures for evaluating the inelastic behaviour of metal powders during densification and experimental data. Chooses the simulation of the dilatometer measurement of a cylindrical component during HIP and manufacturing simulation of a turbine component to near net shape (NNS) as a demonstrator example. Both components are made of a hot isostatically pressed hot‐working martensitic steel. Compares the result of the simulation in the form of the final geometry of the container with the geometry of a real component produced by HIP. Makes a comparison between the calculated and measured deformations during the HIP process for the cylindrical component. Measures the final geometry of the turbine component by means of a computer controlled measuring machine (CMM). Performs the complete process from design and simulation to geometry verification within a computer‐aided concurrent engineering (CACE) system.
Computer Methods in Applied Mechanics and Engineering | 2000
Bengt Wikman; Hans-Åke Häggblad
In modelling of hot isostatic pressing (HIP) of powder materials the constitutive model should be able to describe different deformation mechanisms during the consolidation process. In the early stage, the consolidation is dominated by granular behaviour. As temperature and pressure increase in the powder the deformation can be described by a viscoplastic model. Experimental observations show substantial time-independent deformation in the early stage. At this stage of the densification process, pores in the powder are still interconnected. This cannot be described properly by a viscoplastic model. The inconsistency between the deformation mechanisms can be treated by a combined elasto-plastic and elasto-viscoplastic model. Here a granular plasticity model is combined with a viscoplastic model. In previous works the viscoplastic model, power-law breakdown, has been used to describe the entire deformation process. The combined model is implemented into an in-house finite deformation code for the solution of coupled thermomechanical problems. The simulation of a hot isostatic pressing test with dilatometer is performed in order to compare calculated results with the experimental measurement. The results from previously performed analysis carried out with a viscoplastic model only are also compared. Analysis with the combined material model shows good agreement with the experiment for the whole densification process.
Computer Methods in Applied Mechanics and Engineering | 1997
Hans-Åke Häggblad; L. Karlsson
Abstract This paper presents a finite element simulation of the thermomechanical phenomena occurring during Hot Isostatic Pressing (HIP) of a powder metal component which includes a graphite core. The thermomechanical coupling is achieved in a staggered step manner. The staggered step approach considers the coupled thermomechanical response of solids, including nonlinear effects in both the thermal and mechanical analyses. The creep behaviour of the powder material during densification is modelled using the constitutive equations of thermal elasto-viscoplastic type with compressibility. The various mechanical material properties are assumed to be functions of temperature and relative density. The mechanical solution also includes large deformation and strains. The thermal problem includes temperature and relative density dependent specific heat and thermal conductivity. The constitutive equations and relations for thermal characteristics are implemented into the implicit nonlinear finite element code, PALM2D. The simulation of the HIP process of a component with internal core is chosen as an application example. The component, injection molding tool, is produced of a hot isostatically pressed stainless tool steel with an internal cavity which is achieved by inserting a graphite core into the HIP container. To verify the result of the simulation, the geometry of the capsule and the coated core are measured both before and after pressing using a computer controlled measurement machine (CMM). The measured geometry is compared with the simulated final shapes of the container and internal core. A computer-aided concurrent engineering system (CACE) is used for the complete manufacturing process from the design of the component and finite element simulation to the inspection of the final geometry.
Central European Journal of Engineering | 2012
Björn Zakrisson; Hans-Åke Häggblad; Pär Jonsén
A detonating explosive interacting with a deformable structure is a highly transient and non-linear event. In field blast trials of military vehicles, a standard procedure is often followed in order to reduce the uncertainties and increase the quality of the test. If the explosive is buried in the ground, the state of the soil must meet specific demands. In the present work, laboratory experiments have been performed to characterize the behaviour of a soil material. Soil may be considered a three-phase medium, consisting of solid grains, water and air. Variations between the amounts of these phases affect the mechanical properties of the soil. The experimental outcome has formed input data to represent the soil behaviour included in a three-phase elastic-plastic cap model. This unified constitutive model for soil has been used for numerical simulations representing field blast trials, where the explosive load is interacting with a deformable structure. The blast trials included explosive buried at different depths in wet or dry sand. A dependence of the soil initial conditions can be shown, both in the past field trials along with the numerical simulations. Even though some deviations exist, the simulations showed in general acceptable agreement with the experimental results.
MATERIALS PROCESSING AND DESIGN; Modeling, Simulation and Applications; NUMIFORM '07; Proceedings of the 9th International Conference on Numerical Methods in Industrial Forming Processes | 2007
Gustaf Gustafsson; Hans-Åke Häggblad; Mats Oldenburg
In this work the Smoothed Particle Hydrodynamics (SPH) method is used to simulate iron ore pellets flow. A continuum material model describing the yield strength, elastic and plastic parameters for pellets as a granular material is used in the simulations. The most time consuming part in the SPH method is the contact search of neighboring nodes at each time step. In this study, a position code algorithm for the contact search is presented. The cost of contact searching for this algorithm is of the order of Nlog2N, where N is the number of nodes in the system. The SPH‐model is used for simulation of iron ore pellets silo flow. A two dimensional axisymmetric model of the silo is used in the simulations. The simulation results are compared with data from an experimental cylindrical silo, where pellets are discharged from a concentric outlet. Primary the flow pattern is compared.
Powder Metallurgy | 2004
Magnus Eriksson; Hans-Åke Häggblad; Carina Berggren; M. Andersson; R. Holmersson; E. Carlström
Abstract A new method to prepare titanium dental copings from titanium powder was tested, involving high velocity compaction and various elastic forms, which were used to achieve a semi-isostatic effect during the impact. The tooth preparation die (mandrel) and the powder were placed inside an elastic form. The impact struck the elastic form, and the powder was compacted against the tooth preparation die. Several different elastomers were tested to find the best one. Cross-sections of the powder bodies were studied for density variations. The soft, flexible elastomer worked best to compact the powder. The highest densification could be focused closest to the mandrel where the coping should be milled out. The density in the highest density areas could locally reach 98–99%. If the method with elastic forms could be optimised to give as high a density as without elastic forms, a lower shrinkage and possible deformation of the copings could be reached.