Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Bouwmeester is active.

Publication


Featured researches published by Hans Bouwmeester.


Regulatory Toxicology and Pharmacology | 2009

Review of health safety aspects of nanotechnologies in food production.

Hans Bouwmeester; Susan Dekkers; M.Y. Noordam; Werner I. Hagens; Astrid S. Bulder; Cees de Heer; Sandra E.C.G. ten Voorde; Susan W.P. Wijnhoven; Hans J.P. Marvin; Adriënne J.A.M. Sips

Due to new, previously unknown, properties attributed to engineered nanoparticles many new products are introduced in the agro-food area. Nanotechnologies cover many aspects, such as disease treatment, food security, new materials for pathogen detection, packaging materials and delivery systems. As with most new and evolving technologies, potential benefits are emphasized, while little is known on safety of the application of nanotechnologies in the agro-food sector. This review gives an overview of scientific issues that need to be addressed with priority in order to improve the risk assessment for nanoparticles in food. The following research topics are considered to contribute pivotally to risk assessment of nanotechnologies and nanoparticles in food products. Set a definition for NPs to facilitate regulatory discussions, prioritization of research and exchange of study results. Develop analytical tools for the characterization of nanoparticles in complex biological matrices like food. Establish relevant dose metrics for nanoparticles used for both interpretation of scientific studies as well as regulatory frameworks. Search for deviant behavior (kinetics) and novel effects (toxicity) of nanoparticles and assess the validity of currently used test systems following oral exposure. Estimate the consumer exposure to nanoparticles.


ACS Nano | 2012

Distribution, elimination, and toxicity of silver nanoparticles and silver ions in rats after 28-day oral exposure.

Meike van der Zande; Rob J. Vandebriel; Elke Van Doren; Evelien Kramer; Zahira Herrera Rivera; Cecilia S. Serrano-Rojero; Eric R. Gremmer; Jan Mast; Ruud J. B. Peters; Peter C. H. Hollman; Peter J. M. Hendriksen; Hans J.P. Marvin; Ad A. C. M. Peijnenburg; Hans Bouwmeester

We report the results of a 28-day oral exposure study in rats, exposed to <20 nm noncoated, or <15 nm PVP-coated silver nanoparticles ([Ag] = 90 mg/kg body weight (bw)), or AgNO(3) ([Ag] = 9 mg/kg bw), or carrier solution only. Dissection was performed at day 29, and after a wash-out period of 1 or 8 weeks. Silver was present in all examined organs with the highest levels in the liver and spleen for all silver treatments. Silver concentrations in the organs were highly correlated to the amount of Ag(+) in the silver nanoparticle suspension, indicating that mainly Ag(+), and to a much lesser extent silver nanoparticles, passed the intestines in the silver nanoparticle exposed rats. In all groups silver was cleared from most organs after 8 weeks postdosing, but remarkably not from the brain and testis. Using single particle inductively coupled plasma mass spectrometry, silver nanoparticles were detected in silver nanoparticle exposed rats, but, remarkably also in AgNO(3) exposed rats, hereby demonstrating the formation of nanoparticles from Ag(+)in vivo that are probably composed of silver salts. Biochemical markers and antibody levels in blood, lymphocyte proliferation and cytokine release, and NK-cell activity did not reveal hepatotoxicity or immunotoxicity of the silver exposure. In conclusion, oral exposure to silver nanoparticles appears to be very similar to exposure to silver salts. However, the consequences of in vivo formation of silver nanoparticles, and of the long retention of silver in brain and testis should be considered in a risk assessment of silver nanoparticles.


Nanotoxicology | 2011

Presence and risks of nanosilica in food products

Susan Dekkers; Petra Krystek; Ruud J. B. Peters; Daniëlle Pk Lankveld; Bas G. H. Bokkers; Paula H. van Hoeven-Arentzen; Hans Bouwmeester; Agnes G. Oomen

Abstract This study uniquely describes all steps of the risk assessment process for the use of one specific nanomaterial (nanosilica) in food products. The aim was to identify gaps in essential knowledge and the difficulties and uncertainties associated with each of these steps. Several food products with added silica (E551) were analyzed for the presence, particle size and concentration of nanosilica particles, using experimental analytical data, and the intake of nanosilica via food was estimated. As no information is available on the absorption of nanosilica from the gastrointestinal tract, two scenarios for risk assessment were considered. The first scenario assumes that the silica is absorbed as dissolved silica, while the second scenario assumes that nanosilica particles themselves are absorbed from the gastrointestinal tract. For the first scenario no adverse effects are expected to occur. For the second scenario there are too many uncertainties to allow proper risk assessment. Therefore, it is recommended to prioritize research on how nanosilica is absorbed from the gastrointestinal tract.


Journal of Agricultural and Food Chemistry | 2008

A review of analytical methods for the identification and characterization of nano delivery systems in food.

Dion M.A.M. Luykx; Ruud J. B. Peters; Saskia M. van Ruth; Hans Bouwmeester

Detection and characterization of nano delivery systems is an essential part of understanding the benefits as well as the potential toxicity of these systems in food. This review gives a detailed description of food nano delivery systems based on lipids, proteins, and/or polysaccharides and investigates the current analytical techniques that can be used for the identification and characterization of these delivery systems in food products. The analytical approaches have been subdivided into three groups; separation techniques, imaging techniques, and characterization techniques. The principles of the techniques together with their advantages and drawbacks, and reported applications concerning nano delivery systems, or otherwise related compounds are discussed. The review shows that for a sufficient characterization, the nano delivery systems need to be separated from the food matrix, for which high-performance liquid chromatography or field flow fractionation are the most promising techniques. Subsequently, online photon correlation spectroscopy and mass spectrometry seem to be a convenient combination of techniques to characterize a wide variety of nano delivery systems.


ACS Nano | 2012

Presence of Nano-Sized Silica during In Vitro Digestion of Foods Containing Silica as a Food Additive

Ruud J. B. Peters; Evelien Kramer; Agnes G. Oomen; Zahira Herrera Rivera; Gerlof Oegema; Peter Tromp; Remco Fokkink; Anton G. Rietveld; Hans J.P. Marvin; Stefan Weigel; Ad A. C. M. Peijnenburg; Hans Bouwmeester

The presence, dissolution, agglomeration state, and release of materials in the nano-size range from food containing engineered nanoparticles during human digestion is a key question for the safety assessment of these materials. We used an in vitro model to mimic the human digestion. Food products subjected to in vitro digestion included (i) hot water, (ii) coffee with powdered creamer, (iii) instant soup, and (iv) pancake which either contained silica as the food additive E551, or to which a form of synthetic amorphous silica or 32 nm SiO(2) particles were added. The results showed that, in the mouth stage of the digestion, nano-sized silica particles with a size range of 5-50 and 50-500 nm were present in food products containing E551 or added synthetic amorphous silica. However, during the successive gastric digestion stage, this nano-sized silica was no longer present for the food matrices coffee and instant soup, while low amounts were found for pancakes. Additional experiments showed that the absence of nano-sized silica in the gastric stage can be contributed to an effect of low pH combined with high electrolyte concentrations in the gastric digestion stage. Large silica agglomerates are formed under these conditions as determined by DLS and SEM experiments and explained theoretically by the extended DLVO theory. Importantly, in the subsequent intestinal digestion stage, the nano-sized silica particles reappeared again, even in amounts higher than in the saliva (mouth) digestion stage. These findings suggest that, upon consumption of foods containing E551, the gut epithelium is most likely exposed to nano-sized silica.


ACS Nano | 2011

Characterization of Translocation of Silver Nanoparticles and Effects on Whole-Genome Gene Expression Using an In Vitro Intestinal Epithelium Coculture Model

Hans Bouwmeester; Jenneke Poortman; Ruud J. B. Peters; Elly Wijma; Evelien Kramer; Sunday Makama; Kinarsashanti Puspitaninganindita; Hans J.P. Marvin; Ad A. C. M. Peijnenburg; Peter J. M. Hendriksen

Applications of nanoparticles in the food sector are eminent. Silver nanoparticles are among the most frequently used, making consumer exposure to silver nanoparticles inevitable. Information about uptake through the intestines and possible toxic effects of silver nanoparticles is therefore very important but still lacking. In the present study, we used an in vitro model for the human intestinal epithelium consisting of Caco-2 and M-cells to study the passage of silver nanoparticles and their ionic equivalents and to assess their effects on whole-genome mRNA expression. This in vitro intestine model was exposed to four sizes of silver nanoparticles for 4 h. Exposure to silver ions was included as a control since 6-17% of the silver nanoparticles were found to be dissociated into silver ions. The amount of silver ions that passed the Caco-2 cell barrier was equal for the silver ion and nanoparticle exposures. The nanoparticles induced clear changes in gene expression in a range of stress responses including oxidative stress, endoplasmatic stress response, and apoptosis. The gene expression response to silver nanoparticles, however, was very similar to that of AgNO(3). Therefore, the observed effects of the silver nanoparticles are likely exerted by the silver ions that are released from the nanoparticles.


Nanotoxicology | 2011

Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices

Hans Bouwmeester; Iseult Lynch; Hans J.P. Marvin; Kenneth A. Dawson; Markus Berges; Diane Braguer; Hugh J. Byrne; Alan Casey; Gordon Chambers; Martin J. D. Clift; Giuliano Elia; Teresa F. Fernandes; Lise Fjellsbø; Peter Hatto; Lucienne Juillerat; Christoph Klein; Wolfgang G. Kreyling; Carmen Nickel; Michael Riediker; Vicki Stone

Abstract This paper presents the outcomes from a workshop of the European Network on the Health and Environmental Impact of Nanomaterials (NanoImpactNet). During the workshop, 45 experts in the field of safety assessment of engineered nanomaterials addressed the need to systematically study sets of engineered nanomaterials with specific metrics to generate a data set which would allow the establishment of dose-response relations. The group concluded that international cooperation and worldwide standardization of terminology, reference materials and protocols are needed to make progress in establishing lists of essential metrics. High quality data necessitates the development of harmonized study approaches and adequate reporting of data. Priority metrics can only be based on well-characterized dose-response relations derived from the systematic study of the bio-kinetics and bio-interactions of nanomaterials at both organism and (sub)-cellular levels. In addition, increased effort is needed to develop and validate analytical methods to determine these metrics in a complex matrix.


Journal of Agricultural and Food Chemistry | 2014

Characterization of Titanium Dioxide Nanoparticles in Food Products: Analytical Methods To Define Nanoparticles

Ruud J. B. Peters; Greet van Bemmel; Zahira Herrera-Rivera; Hans P. F. G. Helsper; Hans J.P. Marvin; Stefan Weigel; Peter Tromp; Agnes G. Oomen; Anton G. Rietveld; Hans Bouwmeester

Titanium dioxide (TiO2) is a common food additive used to enhance the white color, brightness, and sometimes flavor of a variety of food products. In this study 7 food grade TiO2 materials (E171), 24 food products, and 3 personal care products were investigated for their TiO2 content and the number-based size distribution of TiO2 particles present in these products. Three principally different methods have been used to determine the number-based size distribution of TiO2 particles: electron microscopy, asymmetric flow field-flow fractionation combined with inductively coupled mass spectrometry, and single-particle inductively coupled mass spectrometry. The results show that all E171 materials have similar size distributions with primary particle sizes in the range of 60-300 nm. Depending on the analytical method used, 10-15% of the particles in these materials had sizes below 100 nm. In 24 of the 27 foods and personal care products detectable amounts of titanium were found ranging from 0.02 to 9.0 mg TiO2/g product. The number-based size distributions for TiO2 particles in the food and personal care products showed that 5-10% of the particles in these products had sizes below 100 nm, comparable to that found in the E171 materials. Comparable size distributions were found using the three principally different analytical methods. Although the applied methods are considered state of the art, they showed practical size limits for TiO2 particles in the range of 20-50 nm, which may introduce a significant bias in the size distribution because particles <20 nm are excluded. This shows the inability of current state of the art methods to support the European Union recommendation for the definition of nanomaterials.


Nanotoxicology | 2012

Behaviour of silver nanoparticles and silver ions in an in vitro human gastrointestinal digestion model

A.P. Walczak; Remco Fokkink; Ruud J. B. Peters; Peter Tromp; Z.E. Herrera Rivera; Ivonne M. C. M. Rietjens; Peter J. M. Hendriksen; Hans Bouwmeester

Abstract Oral ingestion is an important exposure route for silver nanoparticles (AgNPs), but their fate during gastrointestinal digestion is unknown. This was studied for 60 nm AgNPs and silver ions (AgNO3) using in vitro human digestion model. Samples after saliva, gastric and intestinal digestion were analysed with SP-ICPMS, DLS and SEM-EDX. In presence of proteins, after gastric digestion the number of particles dropped significantly, to rise back to original values after the intestinal digestion. SEM-EDX revealed that reduction in number of particles was caused by their clustering. These clusters were composed of AgNPs and chlorine. During intestinal digestion, these clusters disintegrated back into single 60 nm AgNPs. The authors conclude that these AgNPs under physiological conditions can reach the intestinal wall in their initial size and composition. Importantly, intestinal digestion of AgNO3 in presence of proteins resulted in particle formation. These nanoparticles (of 20–30 nm) were composed of silver, sulphur and chlorine.


Journal of Analytical Atomic Spectrometry | 2015

Single particle ICP-MS combined with a data evaluation tool as a routine technique for the analysis of nanoparticles in complex matrices

Ruud J. B. Peters; Zahira Herrera-Rivera; Anna K. Undas; Martijn van der Lee; Hans J.P. Marvin; Hans Bouwmeester; Stefan Weigel

Detection and characterization of nanoparticles (NPs) in complex media as consumer products, food and toxicological test media is an essential part of understanding the potential benefits and risks of the application of nanoparticles. Single particle ICP-MS (spICP-MS) was studied as a screening tool for the detection and characterization of nanoparticles in complex matrices such as food and biological tissues. A data evaluation tool was created for the calculation of particle size, concentration and size distribution from the raw data. spICP-MS measurements were carried out on a standard quadrupole instrument as well as on a sector-field instrument. Performance characteristics were determined for four types of NPs. For the quadrupole instrument the size detection limits were 20 nm (Au and Ag), 50 (TiO2) and 200 nm (SiO2). For the sector-field instrument size detection limits are lower, 10 nm (Au). Concentration detection limits ranged from 1 ng L−1 for 60 nm Au NPs to 0.1 μg L−1 for 500 nm SiO2 particles. The dynamic range of spICP-MS is limited to two orders of magnitude and as a consequence sample dilution is often required. The precision of the method was found to be <5% and <10% for the determination of particle size and concentration, respectively while the accuracy for particle size (Au NP only) was <10%. The robustness against potential sample matrix components was investigated. The applicability to routine samples was demonstrated by four examples (food, waste water, culture media and biological tissues). The presented combination of spICP-MS measurements with a powerful data evaluation tool enables the use of this technique as a fast, cost efficient and easy to use screening tool for metal and metal oxide NPs that can be widely implemented in the statutory monitoring of food and consumer products for the presence of NPs, as well as in the analytical evaluation of toxicological studies.

Collaboration


Dive into the Hans Bouwmeester's collaboration.

Top Co-Authors

Avatar

Ruud J. B. Peters

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Hans J.P. Marvin

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Meike van der Zande

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Stefan Weigel

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Evelien Kramer

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Kai P. Purnhagen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Ad A. C. M. Peijnenburg

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

H.J. Bremmers

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Peter J. M. Hendriksen

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Anna K. Undas

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge