Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Brandstetter is active.

Publication


Featured researches published by Hans Brandstetter.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The Crystal Structure of Dipeptidyl Peptidase IV (CD26) Reveals its Functional Regulation and Enzymatic Mechanism

Michael Engel; Torsten Hoffmann; Leona Wagner; Michael Wermann; Ulrich Heiser; Reiner Kiefersauer; Robert Huber; Wolfram Bode; Hans-Ulrich Demuth; Hans Brandstetter

The membrane-bound glycoprotein dipeptidyl peptidase IV (DP IV, CD26) is a unique multifunctional protein, acting as receptor, binding and proteolytic molecule. We have determined the sequence and 1.8 Å crystal structure of native DP IV prepared from porcine kidney. The crystal structure reveals a 2-2-2 symmetric tetrameric assembly which depends on the natively glycosylated β-propeller blade IV. The crystal structure indicates that tetramerization of DP IV is a key mechanism to regulate its interaction with other components. Each subunit comprises two structural domains, the N-terminal eight-bladed β-propeller with open Velcro topology and the C-terminal α/β-hydrolase domain. Analogy with the structurally related POP and tricorn protease suggests that substrates access the buried active site through the β-propeller tunnel while products leave the active site through a separate side exit. A dipeptide mimicking inhibitor complexed to the active site discloses key determinants for substrate recognition, including a Glu–Glu motif that distinguishes DP IV as an aminopeptidase and an oxyanion trap that binds and activates the P2-carbonyl oxygen necessary for efficient postproline cleavage. We discuss active and nonactive site-directed inhibition strategies of this pharmaceutical target protein.


Journal of Biological Chemistry | 1996

X-ray Structure of Active Site-inhibited Clotting Factor Xa IMPLICATIONS FOR DRUG DESIGN AND SUBSTRATE RECOGNITION

Hans Brandstetter; A Kuhne; Wolfram Bode; Robert Huber; W von der Saal; K Wirthensohn; Richard A. Engh

The 3.0-Å resolution x-ray structure of human des-Gla-coagulation factor Xa (fXa) has been determined in complex with the synthetic inhibitor DX-9065a. The binding geometry is characterized primarily by two interaction sites: the naphthamidine group is fixed in the S1 pocket by a typical salt bridge to Asp-189, while the pyrrolidine ring binds in the unique aryl-binding site (S4) of fXa. Unlike the large majority of inhibitor complexes with serine proteinases, Gly-216 (S3) does not contribute to hydrogen bond formation. In contrast to typical thrombin binding modes, the S2 site of fXa cannot be used by DX-9065a since it is blocked by Tyr-99, and the aryl-binding site (S4) of fXa is lined by carbonyl oxygen atoms that can accommodate positive charges. This has implications for natural substrate recognition as well as for drug design.


ChemBioChem | 2005

Molecular Machines for Protein Degradation

Michael Groll; Matthias Bochtler; Hans Brandstetter; Tim Clausen; Robert Huber

One of the most precisely regulated processes in living cells is intracellular protein degradation. The main component of the degradation machinery is the 20S proteasome present in both eukaryotes and prokaryotes. In addition, there exist other proteasome‐related protein‐degradation machineries, like HslVU in eubacteria. Peptides generated by proteasomes and related systems can be used by the cell, for example, for antigen presentation. However, most of the peptides must be degraded to single amino acids, which are further used in cell metabolism and for the synthesis of new proteins. Tricorn protease and its interacting factors are working downstream of the proteasome and process the peptides into amino acids. Here, we summarise the current state of knowledge about protein‐degradation systems, focusing in particular on the proteasome, HslVU, Tricorn protease and its interacting factors and DegP. The structural information about these protein complexes opens new possibilities for identifying, characterising and elucidating the mode of action of natural and synthetic inhibitors, which affects their function. Some of these compounds may find therapeutic applications in contemporary medicine.


Proteins | 1997

Crystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions.

Amy C. Rosenzweig; Hans Brandstetter; Douglas A. Whittington; Pär Nordlund; Stephen J. Lippard; Christin A. Frederick

The crystal structure of the nonheme iron‐containing hydroxylase component of methane monooxygenase hydroxylase (MMOH) from Methylococcus capsulatus (Bath) has been solved in two crystal forms, one of which was refined to 1.7 Å resolution. The enzyme is composed of two copies each of three subunits (α2β2γ2), and all three subunits are almost completely α‐helical, with the exception of two β hairpin structures in the α subunit. The active site of each α subunit contains one dinuclear iron center, housed in a four‐helix bundle. The two iron atoms are octahedrally coordinated by 2 histidine and 4 glutamic acid residues as well as by a bridging hydroxide ion, a terminal water molecule, and at 4°C, a bridging acetate ion, which is replaced at −160°C with a bridging water molecule. Comparison of the results for two crystal forms demonstrates overall conservation and relative orientation of the domain structures. The most prominent structural difference identified between the two crystal forms is in an altered side chain conformation for Leu 110 at the active site cavity. We suggest that this residue serves as one component of a hydrophobic gate controlling access of substrates to and products from the active site. The leucine gate may be responsible for the effect of the B protein component on the reactivity of the reduced hydroxylase with dioxygen. A potential reductase binding site has been assigned based on an analysis of crystal packing in the two forms and corroborated by inhibition studies with a synthetic peptide corresponding to the proposed docking position. Proteins 29:141–152, 1997.


Structure | 1999

Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding.

Karl-Peter Hopfner; Annette Karcher; Katrin Sichler; Erhard Kopetzki; Hans Brandstetter; Robert Huber; Wolfram Bode; Richard A. Engh

BACKGROUND Among the S1 family of serine proteinases, the blood coagulation factor IXa (fIXa) is uniquely inefficient against synthetic peptide substrates. Mutagenesis studies show that a loop of residues at the S2-S4 substrate-binding cleft (the 99-loop) contributes to the low efficiency. The crystal structure of porcine fIXa in complex with the inhibitor D-Phe-Pro-Arg-chloromethylketone (PPACK) was unable to directly clarify the role of the 99-loop, as the doubly covalent inhibitor induced an active conformation of fIXa. RESULTS The crystal structure of a recombinant two-domain construct of human fIXa in complex with p-aminobenzamidine shows that the Tyr99 sidechain adopts an atypical conformation in the absence of substrate interactions. In this conformation, the hydroxyl group occupies the volume corresponding to the mainchain of a canonically bound substrate P2 residue. To accommodate substrate binding, Tyr99 must adopt a higher energy conformation that creates the S2 pocket and restricts the S4 pocket, as in fIXa-PPACK. The energy cost may contribute significantly to the poor K(M) values of fIXa for chromogenic substrates. In homologs, such as factor Xa and tissue plasminogen activator, the different conformation of the 99-loop leaves Tyr99 in low-energy conformations in both bound and unbound states. CONCLUSIONS Molecular recognition of substrates by fIXa seems to be determined by the action of the 99-loop on Tyr99. This is in contrast to other coagulation enzymes where, in general, the chemical nature of residue 99 determines molecular recognition in S2 and S3-S4. This dominant role on substrate interaction suggests that the 99-loop may be rearranged in the physiological fX activation complex of fIXa, fVIIIa, and fX.


Biological Chemistry | 2001

Pyrimidine-2,4,6-Triones: a new effective and selective class of matrix metalloproteinase inhibitors.

Frank Grams; Hans Brandstetter; S. D'Alo; Geppert D; Krell Hw; Leinert H; Livi; Ernesto Menta; Oliva A; Gerd Zimmermann; Gram F; Livi VMenta E

Abstract Matrix metalloproteinases (MMPs) are a family of zinc endopeptidases that have been implicated in various disease processes. Different classes of MMP inhibitors, including hydroxamic acids, phosphinic acids and thiols, have been previously described. Most of these mimic peptides and most likely bind in a similar way to the corresponding peptide substrates. Here we desccribe pyrimidinetriones as a completely new class of metalloprotease inhibitors. While the pyrimidinetrione template is used as the zincchelating moiety, the substituents have been optimized to yield inhibitors comparable in their inhibition efficiency of matrix metalloproteinases to hydroxamic acid derivatives such as batimastat. However, they are much more specific for a small subgroup of MMPs, namely the gelatinases (MMP-2 and MMP-9).


Journal of Molecular Biology | 2002

Structural basis of the adaptive molecular recognition by MMP9.

Hyunju Cha; Erhard Kopetzki; Robert Huber; Martin Lanzendörfer; Hans Brandstetter

Matrix metalloproteinase (MMPs) are critical for the degradation of extracellular matrix components and, therefore, need to be regulated tightly. Almost all MMPs share a homologous C-terminal haemopexin-like domain (PEX). Besides its role in macromolecular substrate processing, the PEX domains appear to play a major role in regulating MMP activation, localisation and inhibition. One intriguing property of MMP9 is its competence to bind different proteins, involved in these regulatory processes, with high affinity at an overlapping recognition site on its PEX domain. With the crystal structure of the PEX9 dimer, we present the first example of how PEX domains accomplish these diverse roles. Blade IV of PEX9 mediates the non-covalent and predominantly hydrophobic dimerisation contact. Large shifts of blade III and, in particular, blade IV, accompany the dimerisation, resulting in a remarkably asymmetric homodimeric structure. The asymmetry provides a novel mechanism of adaptive protein recognition, where different proteins (PEX9, PEX1, and TIMP1) can bind with high affinity to PEX9 at an overlapping site. Finally, the structure illustrates how the dimerisation generates new properties on both a physico-chemical and functional level.


Journal of Biological Chemistry | 1998

Changing Residue 338 in Human Factor IX from Arginine to Alanine Causes an Increase in Catalytic Activity

Jinli Chang; Jianping Jin; Pete Lollar; Wolfram Bode; Hans Brandstetter; Nobuko Hamaguchi; David L. Straight; Darrel W. Stafford

This study was designed to identify functionally important factor IX (FIX) residues. Using recombinant techniques and cell culture, we produced a mutant FIX with arginine at 338 changed to alanine (R338A-FIX). This molecule had approximately 3 times greater clotting activity than that of wild type FIX (wt-FIX) in the activated partial thromboplastin assay. R338A-FIX reacted normally with a panel of three FIX specific monoclonal antibodies and migrated on sodium dodecyl sulfate-polyacrylamide gels indistinguishably from wt-FIX. Using functional assays, we determined that R338A-FIXa’sK d for factor VIIIa (FVIIIa) was similar to that of wt-FIXa. Our kinetic analysis, using factor X as substrate, indicated that the mutation’s major effects were a 3-fold increase ink cat and a 2-fold decrease inK m both manifested only in the presence of FVIIIa. R338A-FIXa’s increased catalytic efficiency did not result from ablation of a thrombin sensitive site, reported to occur at arginine 338, since in our assays the thrombin inhibitor, hirudin, had no effect on activity of either wt-FIXa or R338A-FIXa. R338A-FIXa and wt-FIXa had equal activity, with or without FVIIIa, toward the synthetic substrate, methylsulfonyl-d-cyclohexylglycyl-arginine-p-nitroanilide. Interestingly, R338A-FIXa had reduced affinity for heparin. Therefore, we propose that R338A-FIXa’s increased activity is not due to an allosteric effect on the active site, but that the Arg-338 residue is part of an exosite that binds both factor X and the mucopolysaccharide, heparin.


Biochimie | 2010

Natural and synthetic inhibitors of kallikrein-related peptidases (KLKs)

Peter Goettig; Viktor Magdolen; Hans Brandstetter

Including the true tissue kallikrein KLK1, kallikrein-related peptidases (KLKs) represent a family of fifteen mammalian serine proteases. While the physiological roles of several KLKs have been at least partially elucidated, their activation and regulation remain largely unclear. This obscurity may be related to the fact that a given KLK fulfills many different tasks in diverse fetal and adult tissues, and consequently, the timescale of some of their physiological actions varies significantly. To date, a variety of endogenous inhibitors that target distinct KLKs have been identified. Among them are the attenuating Zn2+ ions, active site-directed proteinaceous inhibitors, such as serpins and the Kazal-type inhibitors, or the huge, unspecific compartment forming α2-macroglobulin. Failure of these inhibitory systems can lead to certain pathophysiological conditions. One of the most prominent examples is the Netherton syndrome, which is caused by dysfunctional domains of the Kazal-type inhibitor LEKTI-1 which fail to appropriately regulate KLKs in the skin. Small synthetic inhibitory compounds and natural polypeptidic exogenous inhibitors have been widely employed to characterize the activity and substrate specificity of KLKs and to further investigate their structures and biophysical properties. Overall, this knowledge leads not only to a better understanding of the physiological tasks of KLKs, but is also a strong fundament for the synthesis of small compound drugs and engineered biomolecules for pharmaceutical approaches. In several types of cancer, KLKs have been found to be overexpressed, which makes them clinically relevant biomarkers for prognosis and monitoring. Thus, down regulation of excessive KLK activity in cancer and in skin diseases by small inhibitor compounds may represent attractive therapeutical approaches.


Nature | 2001

Crystal structure of the tricorn protease reveals a protein disassembly line

Hans Brandstetter; Jeong-Sun Kim; Michael Groll; Robert Huber

The degradation of cytosolic proteins is carried out predominantly by the proteasome, which generates peptides of 7–9 amino acids long. These products need further processing. Recently, a proteolytic system was identified in the model organism Thermoplasma acidophilum that performs this processing. The hexameric core protein of this modular system, referred to as tricorn protease, is a 720K protease that is able to assemble further into a giant icosahedral capsid, as determined by electron microscopy. Here, we present the crystal structure of the tricorn protease at 2.0 Å resolution. The structure reveals a complex mosaic protein whereby five domains combine to form one of six subunits, which further assemble to form the 3-2-symmetric core protein. The structure shows how the individual domains coordinate the specific steps of substrate processing, including channelling of the substrate to, and the product from, the catalytic site. Moreover, the structure shows how accessory protein components might contribute to an even more complex protein machinery that efficiently collects the tricorn-released products.

Collaboration


Dive into the Hans Brandstetter's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Briza

University of Salzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael Groll

Center for Integrated Protein Science Munich

View shared research outputs
Researchain Logo
Decentralizing Knowledge