Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Christian Hennies is active.

Publication


Featured researches published by Hans Christian Hennies.


Nature Genetics | 2000

Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis.

Heiko Witt; Werner Luck; Hans Christian Hennies; Classen M; Andreas Kage; Lass U; Olfert Landt; Michael Becker

Chronic pancreatitis (CP) is a continuing or relapsing inflammatory disease of the pancreas. In approximately one-third of all cases, no aetiological factor can be found, and these patients are classified as having idiopathic disease. Pathophysiologically, autodigestion and inflammation may be caused by either increased proteolytic activity or decreased protease inhibition. Several studies have demonstrated mutations in the cationic trypsinogen gene (PRSS1) in patients with hereditary or idiopathic CP. It is thought that these mutations result in increased trypsin activity within the pancreatic parenchyma. Most patients with idiopathic or hereditary CP, however, do not have mutations in PRSS1 (ref. 4). Here we analysed 96 unrelated children and adolescents with CP for mutations in the gene encoding the serine protease inhibitor, Kazal type 1 (SPINK1), a pancreatic trypsin inhibitor. We found mutations in 23% of the patients. In 18 patients, 6 of whom were homozygous, we detected a missense mutation of codon 34 (N34S). We also found four other sequence variants. Our results indicate that mutations in SPINK1 are associated with chronic pancreatitis.


Nature Genetics | 2006

The centrosomal protein nephrocystin-6 is mutated in Joubert syndrome and activates transcription factor ATF4

John A. Sayer; Edgar A. Otto; John F. O'Toole; Gudrun Nürnberg; Michael A. Kennedy; Christian F. W. Becker; Hans Christian Hennies; Juliana Helou; Massimo Attanasio; Blake V. Fausett; Boris Utsch; Hemant Khanna; Yan Liu; Iain A. Drummond; Isao Kawakami; Takehiro Kusakabe; Motoyuki Tsuda; Li Ma; Hwankyu Lee; Ronald G. Larson; Susan J. Allen; Christopher J. Wilkinson; Erich A. Nigg; Chengchao Shou; Concepción Lillo; David S. Williams; Bernd Hoppe; Markus J. Kemper; Thomas J. Neuhaus; Melissa A. Parisi

The molecular basis of nephronophthisis, the most frequent genetic cause of renal failure in children and young adults, and its association with retinal degeneration and cerebellar vermis aplasia in Joubert syndrome are poorly understood. Using positional cloning, we here identify mutations in the gene CEP290 as causing nephronophthisis. It encodes a protein with several domains also present in CENPF, a protein involved in chromosome segregation. CEP290 (also known as NPHP6) interacts with and modulates the activity of ATF4, a transcription factor implicated in cAMP-dependent renal cyst formation. NPHP6 is found at centrosomes and in the nucleus of renal epithelial cells in a cell cycle–dependent manner and in connecting cilia of photoreceptors. Abrogation of its function in zebrafish recapitulates the renal, retinal and cerebellar phenotypes of Joubert syndrome. Our findings help establish the link between centrosome function, tissue architecture and transcriptional control in the pathogenesis of cystic kidney disease, retinal degeneration, and central nervous system development.


Nature Genetics | 2006

Positional cloning uncovers mutations in PLCE1 responsible for a nephrotic syndrome variant that may be reversible

Bernward Hinkes; Roger C. Wiggins; Rasheed Gbadegesin; Christopher N. Vlangos; Dominik Seelow; Gudrun Nürnberg; Puneet Garg; Rakesh Verma; Hassan Chaib; Bethan E. Hoskins; Shazia Ashraf; Christian F. W. Becker; Hans Christian Hennies; Meera Goyal; Bryan L. Wharram; Asher D. Schachter; Sudha Mudumana; Iain A. Drummond; Dontscho Kerjaschki; Rüdiger Waldherr; Alexander Dietrich; Fatih Ozaltin; Aysin Bakkaloglu; Roxana Cleper; Lina Basel-Vanagaite; Martin Pohl; Martin Griebel; Alexey N. Tsygin; Alper Soylu; Dominik Müller

Nephrotic syndrome, a malfunction of the kidney glomerular filter, leads to proteinuria, edema and, in steroid-resistant nephrotic syndrome, end-stage kidney disease. Using positional cloning, we identified mutations in the phospholipase C epsilon gene (PLCE1) as causing early-onset nephrotic syndrome with end-stage kidney disease. Kidney histology of affected individuals showed diffuse mesangial sclerosis (DMS). Using immunofluorescence, we found PLCε1 expression in developing and mature glomerular podocytes and showed that DMS represents an arrest of normal glomerular development. We identified IQ motif–containing GTPase-activating protein 1 as a new interaction partner of PLCε1. Two siblings with a missense mutation in an exon encoding the PLCε1 catalytic domain showed histology characteristic of focal segmental glomerulosclerosis. Notably, two other affected individuals responded to therapy, making this the first report of a molecular cause of nephrotic syndrome that may resolve after therapy. These findings, together with the zebrafish model of human nephrotic syndrome generated by plce1 knockdown, open new inroads into pathophysiology and treatment mechanisms of nephrotic syndrome.


American Journal of Human Genetics | 2009

Familial hemophagocytic lymphohistiocytosis type 5 (FHL-5) is caused by mutations in Munc18-2 and impaired binding to syntaxin 11.

Udo zur Stadt; Jan Rohr; Wenke Seifert; Florian Koch; Samantha Grieve; Julia Pagel; Julia Strauß; Brigitte Kasper; Gudrun Nürnberg; Christian Becker; Andrea Maul-Pavicic; Karin Beutel; Gritta Janka; Gillian M. Griffiths; Stephan Ehl; Hans Christian Hennies

Rapid intracellular transport and secretion of cytotoxic granules through the immunological synapse requires a balanced interaction of several proteins. Disturbance of this highly regulated process underlies familial hemophagocytic lymphohistiocytosis (FHL), a genetically heterogeneous autosomal-recessive disorder characterized by a severe hyperinflammatory phenotype. Here, we have assigned FHL-5 to a 1 Mb region on chromosome 19p by using high-resolution SNP genotyping in eight unrelated FHL patients from consanguineous families. Subsequently, we found nine different mutations, either truncating or missense, in STXBP2 in twelve patients from Turkey, Saudi Arabia, and Central Europe. STXBP2 encodes syntaxin binding protein 2 (Munc18-2), involved in the regulation of vesicle transport to the plasma membrane. We have identified syntaxin 11, a SNARE protein mutated in FHL-4, as an interaction partner of STXBP2. This interaction is eliminated by the missense mutations found in our FHL-5 patients, which leads to a decreased stability of both proteins, as shown in patient lymphocytes. Activity of natural killer and cytotoxic T cells was markedly reduced or absent, as determined by CD107 degranulation. Our findings thus identify a key role for STXBP2 in lytic granule exocytosis.


American Journal of Human Genetics | 2006

Increased Activity of Coagulation Factor XII (Hageman Factor) Causes Hereditary Angioedema Type III

Sven Cichon; Ludovic Martin; Hans Christian Hennies; Felicitas Müller; Karen Van Driessche; Anna Karpushova; Wim J. Stevens; Roberto Colombo; Thomas Renné; Christian Drouet; Konrad Bork; Markus M. Nöthen

Hereditary angioedema (HAE) is characterized clinically by recurrent acute skin swelling, abdominal pain, and potentially life-threatening laryngeal edema. Three forms of HAE have been described. The classic forms, HAE types I and II, occur as a consequence of mutations in the C1-inhibitor gene. In contrast to HAE types I and II, HAE type III has been observed exclusively in women, where it appears to be correlated with conditions of high estrogen levels--for example, pregnancy or the use of oral contraceptives. A recent report proposed two missense mutations (c.1032C-->A and c.1032C-->G) in F12, the gene encoding human coagulation factor XII (FXII, or Hageman factor) as a possible cause of HAE type III. Here, we report the occurrence of the c.1032C-->A (p.Thr328Lys) mutation in an HAE type III-affected family of French origin. Investigation of the F12 gene in a large German family did not reveal a coding mutation. Haplotype analysis with use of microsatellite markers is compatible with locus heterogeneity in HAE type III. To shed more light on the pathogenic relevance of the HAE type III-associated p.Thr328Lys mutation, we compared FXII activity and plasma levels in patients carrying the mutation with that of healthy control individuals. Our data strongly suggest that p.Thr328Lys is a gain-of-function mutation that markedly increases FXII amidolytic activity but that does not alter FXII plasma levels. We conclude that enhanced FXII enzymatic plasma activity in female mutation carriers leads to enhanced kinin production, which results in angioedema. Transcription of F12 is positively regulated by estrogens, which may explain why only women are affected with HAE type III. The results of our study represent an important step toward an understanding of the molecular processes involved in HAE type III and provide diagnostic and possibly new therapeutic opportunities.


American Journal of Human Genetics | 2005

Genetic Variation in the Human Androgen Receptor Gene Is the Major Determinant of Common Early-Onset Androgenetic Alopecia

Axel M. Hillmer; S. Hanneken; Sibylle Ritzmann; Tim Becker; Jan Freudenberg; Felix F. Brockschmidt; Antonia Flaquer; Yun Freudenberg-Hua; Rami Abou Jamra; Christine Metzen; Uwe Heyn; Nadine Schweiger; Regina C. Betz; Bettina Blaumeiser; Jochen Hampe; Stefan Schreiber; Thomas G. Schulze; Hans Christian Hennies; Johannes Schumacher; Peter Propping; Thomas Ruzicka; Sven Cichon; Thomas F. Wienker; Roland Kruse; Markus M. Nöthen

Androgenetic alopecia (AGA), or male-pattern baldness, is the most common form of hair loss. Its pathogenesis is androgen dependent, and genetic predisposition is the major requirement for the phenotype. We demonstrate that genetic variability in the androgen receptor gene (AR) is the cardinal prerequisite for the development of early-onset AGA, with an etiological fraction of 0.46. The investigation of a large number of genetic variants covering the AR locus suggests that a polyglycine-encoding GGN repeat in exon 1 is a plausible candidate for conferring the functional effect. The X-chromosomal location of AR stresses the importance of the maternal line in the inheritance of AGA.


Cellular Physiology and Biochemistry | 2011

In vitro Modeling of Ryanodine Receptor 2 Dysfunction Using Human Induced Pluripotent Stem Cells

Azra Fatima; Guoxing Xu; Kaifeng Shao; Symeon Papadopoulos; Martin Lehmann; Juan Jose Arnaiz-Cot; Angelo O. Rosa; Filomain Nguemo; Matthias Matzkies; Sven Dittmann; Susannah L. Stone; Matthias Linke; Ulrich Zechner; Vera Beyer; Hans Christian Hennies; Stephan Rosenkranz; Baerbel Klauke; Abdul Shokor Parwani; Wilhelm Haverkamp; Gabriele Pfitzer; Martin Farr; Lars Cleemann; Martin Morad; Hendrik Milting; Juergen Hescheler; Tomo Saric

Background/Aims: Induced pluripotent stem (iPS) cells generated from accessible adult cells of patients with genetic diseases open unprecedented opportunities for exploring the pathophysiology of human diseases in vitro. Catecholaminergic polymorphic ventricular tachycardia type 1 (CPVT1) is an inherited cardiac disorder that is caused by mutations in the cardiac ryanodine receptor type 2 gene (RYR2) and is characterized by stress-induced ventricular arrhythmia that can lead to sudden cardiac death in young individuals. The aim of this study was to generate iPS cells from a patient with CPVT1 and determine whether iPS cell-derived cardiomyocytes carrying patient specific RYR2 mutation recapitulate the disease phenotype in vitro. Methods: iPS cells were derived from dermal fibroblasts of healthy donors and a patient with CPVT1 carrying the novel heterozygous autosomal dominant mutation p.F2483I in the RYR2. Functional properties of iPS cell derived-cardiomyocytes were analyzed by using whole-cell current and voltage clamp and calcium imaging techniques. Results: Patch-clamp recordings revealed arrhythmias and delayed afterdepolarizations (DADs) after catecholaminergic stimulation of CPVT1-iPS cell-derived cardiomyocytes. Calcium imaging studies showed that, compared to healthy cardiomyocytes, CPVT1-cardiomyocytes exhibit higher amplitudes and longer durations of spontaneous Ca2+ release events at basal state. In addition, in CPVT1-cardiomyocytes the Ca2+-induced Ca2+-release events continued after repolarization and were abolished by increasing the cytosolic cAMP levels with forskolin. Conclusion: This study demonstrates the suitability of iPS cells in modeling RYR2-related cardiac disorders in vitro and opens new opportunities for investigating the disease mechanism in vitro, developing new drugs, predicting their toxicity, and optimizing current treatment strategies.


The New England Journal of Medicine | 2011

Wnt Signaling and Dupuytren's Disease

Guido H. Dolmans; Paul M. N. Werker; Hans Christian Hennies; Dominic Furniss; Eleonora A. Festen; Lude Franke; Kerstin Becker; Pieter van der Vlies; Bruce H. R. Wolffenbuttel; Sigrid Tinschert; Mohammad R. Toliat; Michael Nothnagel; Andre Franke; Norman Klopp; Peter Nürnberg; Henk Giele; Roel A. Ophoff; Cisca Wijmenga

BACKGROUND Dupuytrens disease is a benign fibromatosis of the hands and fingers that leads to flexion contractures. We hypothesized that multiple genetic and environmental factors influence susceptibility to this disease and sought to identify susceptibility genes to better understand its pathogenesis. METHODS We conducted a genomewide association study of 960 Dutch persons with Dupuytrens disease and 3117 controls (the discovery set) to test for association between the disease and genetic markers. We tested the 35 single-nucleotide polymorphisms (SNPs) most strongly associated with Dupuytrens disease (P<1×10(-4)) in the discovery set in three additional, independent case series comprising a total of 1365 affected persons and 8445 controls from Germany, the United Kingdom, and The Netherlands. RESULTS Initially, we observed a significant genomewide association between Dupuytrens disease and 8 SNPs at three loci. Tests of replication and joint analysis of all data from 2325 patients with Dupuytrens disease and 11,562 controls yielded an association with 11 SNPs from nine different loci (P<5.0×10(-8)). Six of these loci contain genes known to be involved in the Wnt-signaling pathway: WNT4 (rs7524102) (P=2.8×10(-9); odds ratio, 1.28), SFRP4 (rs16879765) (P=5.6×10(-39); odds ratio, 1.98), WNT2 (rs4730775) (P=3.0×10(-8); odds ratio, 0.83), RSPO2 (rs611744) (P=7.9×10(-15); odds ratio, 0.75), SULF1 (rs2912522) (P=2.0×10(-13); odds ratio, 0.72), and WNT7B (rs6519955) (P=3.2×10(-33); odds ratio, 1.54). CONCLUSIONS This study implicates nine different loci involved in genetic susceptibility to Dupuytrens disease. The fact that six of these nine loci harbor genes encoding proteins in the Wnt-signaling pathway suggests that aberrations in this pathway are key to the process of fibromatosis in Dupuytrens disease.


American Journal of Human Genetics | 2010

Loss of Corneodesmosin Leads to Severe Skin Barrier Defect, Pruritus, and Atopy: Unraveling the Peeling Skin Disease

Vinzenz Oji; Katja-Martina Eckl; Karin Aufenvenne; Marc Nätebus; Tatjana Tarinski; Katharina Ackermann; Natalia Seller; Dieter Metze; Gudrun Nürnberg; Regina Fölster-Holst; Monika Schäfer-Korting; Ingrid Hausser; Heiko Traupe; Hans Christian Hennies

Generalized peeling skin disease is an autosomal-recessive ichthyosiform erythroderma characterized by lifelong patchy peeling of the skin. After genome-wide linkage analysis, we have identified a homozygous nonsense mutation in CDSN in a large consanguineous family with generalized peeling skin, pruritus, and food allergies, which leads to a complete loss of corneodesmosin. In contrast to hypotrichosis simplex, which can be associated with specific dominant CDSN mutations, peeling skin disease is characterized by a complete loss of CDSN expression. The skin phenotype is consistent with a recent murine Cdsn knockout model. Using three-dimensional human skin models, we demonstrate that lack of corneodesmosin causes an epidermal barrier defect supposed to account for the predisposition to atopic diseases, and we confirm the role of corneodesmosin as a decisive epidermal adhesion molecule. Therefore, peeling skin disease will represent a new model disorder for atopic diseases, similarly to Netherton syndrome and ichthyosis vulgaris in the recent past.


Circulation | 2004

Novel Gene Locus for Autosomal Dominant Left Ventricular Noncompaction Maps to Chromosome 11p15

Sabine Sasse-Klaassen; Susanne Probst; Brenda Gerull; Erwin Oechslin; Peter Nürnberg; Arnd Heuser; Rolf Jenni; Hans Christian Hennies; Ludwig Thierfelder

Background—Left ventricular noncompaction (LVNC) is a congenital unclassified cardiomyopathy with numerous prominent trabeculations and deep intertrabecular recesses in a hypertrophied and hypokinetic myocardium. It has been reported to occur in isolation or in association with congenital heart disease. Mutations in the X-linked G4.5 gene are responsible for cases of isolated LVNC in male infants, but G4.5 mutations were not found in patients with clinical onset of disease in adulthood. In addition, several families with LVNC and an autosomal dominant pattern of inheritance suggest genetic heterogeneity. Methods and Results—We performed a genome-wide linkage analysis in a family with autosomal dominant LVNC and show that a locus containing the LVNC disease gene maps to chromosome 11p15. A peak 2-point logarithm of odds score of 5.06 was obtained with marker D11S902 at &thetas;=0. Haplotype analysis defined a critical interval of 6.4 centimorgan between D11S1794 and D11S928 corresponding to a physical distance of 6.8 megabases. No disease-causing mutation was identified in 2 prime positional candidate genes, muscle LIM protein (MLP) and SOX6. Conclusions—We have mapped a locus for autosomal dominant LVNC to a 6.8-megabase region on human chromosome 11p15. Identification of the disease gene will allow genetic screening and provide fundamental insight into the understanding of myocardial morphogenesis.

Collaboration


Dive into the Hans Christian Hennies's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Nürnberg

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar

André Reis

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Vinzenz Oji

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge