Hans D. Bartunik
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans D. Bartunik.
Cell | 2000
Clemens Scheufler; Achim Brinker; Gleb Bourenkov; Stefano Pegoraro; Luis Moroder; Hans D. Bartunik; F. Ulrich Hartl; Ismail Moarefi
The adaptor protein Hop mediates the association of the molecular chaperones Hsp70 and Hsp90. The TPR1 domain of Hop specifically recognizes the C-terminal heptapeptide of Hsp70 while the TPR2A domain binds the C-terminal pentapeptide of Hsp90. Both sequences end with the motif EEVD. The crystal structures of the TPR-peptide complexes show the peptides in an extended conformation, spanning a groove in the TPR domains. Peptide binding is mediated by electrostatic interactions with the EEVD motif, with the C-terminal aspartate acting as a two-carboxylate anchor, and by hydrophobic interactions with residues upstream of EEVD. The hydrophobic contacts with the peptide are critical for specificity. These results explain how TPR domains participate in the ordered assembly of Hsp70-Hsp90 multichaperone complexes.
Nature | 2000
Matthias Bochtler; Claudia Hartmann; Hyun Kyu Song; Gleb Bourenkov; Hans D. Bartunik; Robert Huber
The degradation of cytoplasmic proteins is an ATP-dependent process. Substrates are targeted to a single soluble protease, the 26S proteasome, in eukaryotes and to a number of unrelated proteases in prokaryotes. A surprising link emerged with the discovery of the ATP-dependent protease HslVU (heat shock locus VU) in Escherichia coli. Its protease component HslV shares ∼20% sequence similarity and a conserved fold with 20S proteasome β-subunits. HslU is a member of the Hsp100 (Clp) family of ATPases. Here we report the crystal structures of free HslU and an 820,000 relative molecular mass complex of HslU and HslV–the first structure of a complete set of components of an ATP-dependent protease. HslV and HslU display sixfold symmetry, ruling out mechanisms of protease activation that require a symmetry mismatch between the two components. Instead, there is conformational flexibility and domain motion in HslU and a localized order–disorder transition in HslV. Individual subunits of HslU contain two globular domains in relative orientations that correlate with nucleotide bound and unbound states. They are surprisingly similar to their counterparts in N-ethylmaleimide-sensitive fusion protein, the prototype of an AAA-ATPase. A third, mostly α-helical domain in HslU mediates the contact with HslV and may be the structural equivalent of the amino-terminal domains in proteasomal AAA-ATPases.
The EMBO Journal | 2000
Tewfik Soulimane; Gerhard Buse; Gleb Bourenkov; Hans D. Bartunik; Robert Huber; Manuel E. Than
Cytochrome c oxidase is a respiratory enzyme catalysing the energy‐conserving reduction of molecular oxygen to water. The crystal structure of the ba3‐cytochrome c oxidase from Thermus thermophilus has been determined to 2.4 Å resolution using multiple anomalous dispersion (MAD) phasing and led to the discovery of a novel subunit IIa. A structure‐based sequence alignment of this phylogenetically very distant oxidase with the other structurally known cytochrome oxidases leads to the identification of sequence motifs and residues that seem to be indispensable for the function of the haem copper oxidases, e.g. a new electron transfer pathway leading directly from CuA to CuB. Specific features of the ba3‐oxidase include an extended oxygen input channel, which leads directly to the active site, the presence of only one oxygen atom (O2−, OH− or H2O) as bridging ligand at the active site and the mainly hydrophobic character of the interactions that stabilize the electron transfer complex between this oxidase and its substrate cytochrome c. New aspects of the proton pumping mechanism could be identified.
Nature | 1999
Oliver Einsle; Albrecht Messerschmidt; Petra Stach; Gleb Bourenkov; Hans D. Bartunik; Robert Huber; Peter M. H. Kroneck
The enzyme cytochrome c nitrite reductase catalyses the six-electron reduction of nitrite to ammonia as one of the key stepsin the biological nitrogen cycle, where it participates inthe anaerobic energy metabolism of dissimilatory nitrate ammonification. Here we report on the crystal structure of this enzyme from the microorganism Sulfurospirillum deleyianum, which we solved by multiwavelength anomalous dispersion methods. We propose a reaction scheme for the transformation of nitrite based on structural and spectroscopic information. Cytochrome c nitrite reductase is a functional dimer, with 10 close-packed haem groups of type c and an unusual lysine-coordinated high-spin haem at the active site. By comparing the haem arrangement of this nitrite reductase with that of other multihaem cytochromes, we have been able to identify a family of proteins in which the orientation of haem groups is conserved whereas structure and function are not.
Nature | 1999
Sandra Macedo-Ribeiro; Wolfram Bode; Robert Huber; Mary Ann Quinn-Allen; Suhng Wook Kim; Thomas L. Ortel; Gleb Bourenkov; Hans D. Bartunik; Milton T. Stubbs; William H. Kane; Pablo Fuentes-Prior
Rapid and controlled clot formation is achieved through sequential activation of circulating serine proteinase precursors on phosphatidylserine-rich procoagulant membranes of activated platelets and endothelial cells. The homologous complexes Xase and prothrombinase, each consisting of an active proteinase and a non-enzymatic cofactor, perform critical steps within this coagulation cascade. The activated cofactors VIIIa and Va, highly specific for their cognate proteinases, are each derived from precursors with the same A1-A2-B-A3-C1-C2 architecture. Membrane binding is mediated by the C2 domains of both cofactors. Here we report two crystal structures of the C2 domain of human factor Va. The conserved β-barrel framework provides a scaffold for three protruding loops, one of which adopts markedly different conformations in the two crystal forms. We propose a mechanism of calcium-independent, stereospecific binding of factors Va and VIIIa to phospholipid membranes, on the basis of (1) immersion of hydrophobic residues at the apices of these loops in the apolar membrane core; (2) specific interactions with phosphatidylserine head groups in the groove enclosed by these loops; and (3) favourable electrostatic contacts of basic side chains with negatively charged membrane phosphate groups.
Structure | 1999
João M. Dias; Manuel E. Than; Andreas Humm; Robert Huber; Gleb Bourenkov; Hans D. Bartunik; Sergey A. Bursakov; Juan J. Calvete; Jorge Caldeira; Carla Carneiro; José Jg Moura; Isabel Moura; Maria João Romão
BACKGROUND The periplasmic nitrate reductase (NAP) from the sulphate reducing bacterium Desulfovibrio desulfuricans ATCC 27774 is induced by growth on nitrate and catalyses the reduction of nitrate to nitrite for respiration. NAP is a molybdenum-containing enzyme with one bis-molybdopterin guanine dinucleotide (MGD) cofactor and one [4Fe-4S] cluster in a single polypeptide chain of 723 amino acid residues. To date, there is no crystal structure of a nitrate reductase. RESULTS The first crystal structure of a dissimilatory (respiratory) nitrate reductase was determined at 1.9 A resolution by multiwavelength anomalous diffraction (MAD) methods. The structure is folded into four domains with an alpha/beta-type topology and all four domains are involved in cofactor binding. The [4Fe-4S] centre is located near the periphery of the molecule, whereas the MGD cofactor extends across the interior of the molecule interacting with residues from all four domains. The molybdenum atom is located at the bottom of a 15 A deep crevice, and is positioned 12 A from the [4Fe-4S] cluster. The structure of NAP reveals the details of the catalytic molybdenum site, which is coordinated to two MGD cofactors, Cys140, and a water/hydroxo ligand. A facile electron-transfer pathway through bonds connects the molybdenum and the [4Fe-4S] cluster. CONCLUSIONS The polypeptide fold of NAP and the arrangement of the cofactors is related to that of Escherichia coli formate dehydrogenase (FDH) and distantly resembles dimethylsulphoxide reductase. The close structural homology of NAP and FDH shows how small changes in the vicinity of the molybdenum catalytic site are sufficient for the substrate specificity.
Journal of Molecular Biology | 1983
Wolfram Bode; Zhongguo Chen; Klaus Bartels; Carl Kutzbach; Guenther Schmidt-Kastner; Hans D. Bartunik
Abstract Porcine pancreas kallikrein A has been crystallized in the presence of the small inhibitor benzamidine, yielding tetragonal crystals of space group P 4 1 2 1 2 containing two molecules per asymmetric unit. X-ray data up to 2·05 A resolution have been collected using normal rotation anode as well as synchrotron radiation. The crystal structure of benzamidine-kallikrein has been determined using multiple isomorphous replacement techniques, and has subsequently been refined to a crystallographic R -value of 0·220 by applying a diagonal matrix least-squares energy constraint refinement procedure. Both crystallographically independent kallikrein molecules 1 and 2 are related by a non-integral screw axis and form open, heterologous “dimer” structures. The root-mean-square deviation of both molecules is 0·37 A for all main-chain atoms. This value is above the estimated mean positional error of about 0·2 A and reflects some significant conformational differences, especially at surface loops. The binding site of molecule 1 in the asymmetric unit is in contact with residues of molecule 2, whereas the binding site of the latter is free and accessible to the solvent. In both molecules the characteristic “kallikrein loop”, where the peptide chain of kallikrein A is cleaved, is only partially traceable. The carbohydrate attached to Asn95 in this loop, although detectable chemically, is not defined. A comparison of the refined structures of porcine kallikrein and bovine trypsin indicates spatial homology for these enzymes. The root-mean-square difference is 0·68 A if we compare only main-chain atoms of internal segments. Remarkably large deviations are found in some external loops most of which surround the binding site and form a more compact rampart around it in kallikrein than in trypsin. This feature might explain the strongly reduced activity and accessibility of kallikrein towards large protein substrates and inhibitors (e.g. as shown by the model-building experiments on inhibitor complexes reported by Chen & Bode. 1983). The conformation of the active site residues is very similar in both enzymes. Tyr99 of kallikrein, which is a leucyl residue in trypsin, protrudes into the binding site and interferes with the binding of peptide substrates (Chen & Bode. 1983). The kallikrein specificity pocket is significantly enlarged compared with trypsin due to a longer peptide segment, 217 to 220, and to the unique outwards orientation of the carbonyl group of cis -Pro219. Further, the side-chain of Ser226 in porcine kallikrein, which is a glycyl residue in trypsin, partially covers Asp 189 at the bottom of the pocket. These features considerably affect the binding geometry and strength of binding of benzamidine.
Journal of Molecular Biology | 1989
Hans D. Bartunik; L.J. Summers; H.H. Bartsch
The crystal structure of bovine pancreatic beta-trypsin (BPT) has been determined from a novel orthorhombic crystal form which contains substantially more solvent (filling 57% of the volume of the unit cell) than previously determined orthorhombic (44%) and trigonal (37%) BPT structures. The native and benzamidine-inhibited crystal structures of BPT in ammonium sulphate at pH 5.3 have been determined for the new form by molecular replacement techniques. The structures have been refined at 1.5 A resolution with final R-values of 16.7% and 16.9%, respectively. Comparison with the previously refined old orthorhombic forms shows that the overall conformation of the protein backbone is highly conserved. A great number of previously undefined side-chains have been located in density. At the C terminus an extra ion pair involving lysines 87 and 107 has been revealed. A far more detailed picture of the ordered solvent structure has been derived. Thirty water clusters have been identified. A large water network extends from the calcium binding site to the activation area and the autolysis loop. There is evidence for a water channel reaching from the depth of the specificity pocket to the nearby protein surface which might be involved in the displacement of water molecules upon substrate binding. A sulphate anion which forms hydrogen bonds to the active site residues His57, Ser195 and Gly193 was for the first time positioned in clearly defined electron density. Interaction with the sulphate ion may explain the increase in the pKa value of His57 at high sulphate concentrations which was observed by nuclear magnetic resonance studies of a bacterial serine protease both in crystalline form and in solution. Thus, a His-Ser hydrogen bond will not exist in solvents containing sulphate at low pH (up to at least 6.8) where the imidazole of His57 is protonated. The new crystal form is of considerable interest for substrate binding studies. Wide solvent channels should allow diffusion of large substrates (comparable in size to, e.g. pancreatic trypsin inhibitor) into the enzyme crystal. The active site is accessible; intermolecular contact areas are further remote from the active site than in the old orthorhombic form.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Manuel E. Than; Stefan Henrich; Robert Huber; Albert Ries; Karlheinz Mann; Klaus Kühn; Rupert Timpl; Gleb Bourenkov; Hans D. Bartunik; Wolfram Bode
Triple-helical collagen IV protomers associate through their N- and C-termini forming a three-dimensional network, which provides basement membranes with an anchoring scaffold and mechanical strength. The noncollagenous (NC1) domain of the C-terminal junction between two adjacent collagen IV protomers from human placenta was crystallized and its 1.9-Å structure was solved by multiple anomalous diffraction (MAD) phasing. This hexameric NC1 particle is composed of two trimeric caps, which interact through a large planar interface. Each cap is formed by two α1 fragments and one α2 fragment with a similar previously uncharacterized fold, segmentally arranged around an axial tunnel. Each monomer chain folds into two structurally very similar subdomains, which each contain a finger-like hairpin loop that inserts into a six-stranded β-sheet of the neighboring subdomain of the same or the adjacent chain. Thus each trimer forms a quite regular, but nonclassical, sixfold propeller. The trimer–trimer interaction is further stabilized by a previously uncharacterized type of covalent cross-link between the side chains of a Met and a Lys residue of the α1 and α2 chains from opposite trimers, explaining previous findings of nonreducible cross-links in NC1. This structure provides insights into NC1-related diseases such as Goodpasture and Alport syndromes.
Structure | 1998
Alexander E. Aleshin; Chenbo Zeng; Gleb Bourenkov; Hans D. Bartunik; Herbert J. Fromm; Richard B. Honzatko
BACKGROUND Hexokinase I is the pacemaker of glycolysis in brain tissue. The type I isozyme exhibits unique regulatory properties in that physiological levels of phosphate relieve potent inhibition by the product, glucose-6-phosphate (Gluc-6-P). The 100 kDa polypeptide chain of hexokinase I consists of a C-terminal (catalytic) domain and an N-terminal (regulatory) domain. Structures of ligated hexokinase I should provide a basis for understanding mechanisms of catalysis and regulation at an atomic level. RESULTS The complex of human hexokinase I with glucose and Gluc-6-P (determined to 2.8 A resolution) is a dimer with twofold molecular symmetry. The N- and C-terminal domains of one monomer interact with the C- and N-terminal domains, respectively, of the symmetry-related monomer. The two domains of a monomer are connected by a single alpha helix and each have the fold of yeast hexokinase. Salt links between a possible cation-binding loop of the N-terminal domain and a loop of the C-terminal domain may be important to regulation. Each domain binds single glucose and Gluc-6-P molecules in proximity to each other. The 6-phosphoryl group of bound Gluc-6-P at the C-terminal domain occupies the putative binding site for ATP, whereas the 6-phosphoryl group at the N-terminal domain may overlap the binding site for phosphate. CONCLUSIONS The binding synergism of glucose and Gluc-6-P probably arises out of the mutual stabilization of a common (glucose-bound) conformation of hexokinase I. Conformational changes in the N-terminal domain in response to glucose, phosphate, and/or Gluc-6-P may influence the binding of ATP to the C-terminal domain.