Hans D. Osthoff
University of Calgary
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans D. Osthoff.
Environmental Science & Technology | 2011
Levi H Mielke; Amanda Furgeson; Hans D. Osthoff
In the troposphere, nitryl chloride (ClNO₂), produced from uptake of dinitrogen pentoxide (N₂O₅) on chloride containing aerosol, can be an important nocturnal reservoir of NO(x) (= NO + NO₂) and a source of atomic Cl, particularly in polluted coastal environments. Here, we present measurements of ClNO₂ mixing ratios by chemical ionization mass spectrometry (CIMS) in Calgary, Alberta, Canada over a 3-day period. The observed ClNO₂ mixing ratios exhibited a strong diurnal profile, with nocturnal maxima in the range of 80 to 250 parts-per-trillion by volume (pptv) and minima below the detection limit of 5 pptv in the early afternoon. At night, ClNO₂ constituted up to 2% of odd nitrogen, or NO(y). The peak mixing ratios of ClNO₂ observed were considerably below the modeled integrated heterogeneous losses of N₂O₅, indicating that ClNO₂ production was a minor pathway compared to heterogeneous hydrolysis of N₂O₅. Back trajectory analysis using HYSPLIT showed that the study region was not influenced by fresh injections of marine aerosol, implying that aerosol chloride was derived from anthropogenic sources. Molecular chlorine (Cl₂), derived from local anthropogenic sources, was observed at mixing ratios of up to 65 pptv and possibly contributed to formation of aerosol chloride and hence the formation of ClNO₂.
Environmental Science & Technology | 2012
Cora J. Young; Rebecca A. Washenfelder; James M. Roberts; Levi H Mielke; Hans D. Osthoff; Catalina Tsai; Olga Pikelnaya; J. Stutz; P. R. Veres; Anthony Cochran; Trevor C. VandenBoer; James Flynn; N. Grossberg; Christine Haman; Barry Lefer; Harald Stark; Martin Graus; Joost A. de Gouw; J. B. Gilman; William C. Kuster; Steven S. Brown
Photolabile nighttime radical reservoirs, such as nitrous acid (HONO) and nitryl chloride (ClNO(2)), contribute to the oxidizing potential of the atmosphere, particularly in early morning. We present the first vertically resolved measurements of ClNO(2), together with vertically resolved measurements of HONO. These measurements were acquired during the California Nexus (CalNex) campaign in the Los Angeles basin in spring 2010. Average profiles of ClNO(2) exhibited no significant dependence on height within the boundary layer and residual layer, although individual vertical profiles did show variability. By contrast, nitrous acid was strongly enhanced near the ground surface with much smaller concentrations aloft. These observations are consistent with a ClNO(2) source from aerosol uptake of N(2)O(5) throughout the boundary layer and a HONO source from dry deposition of NO(2) to the ground surface and subsequent chemical conversion. At ground level, daytime radical formation calculated from nighttime-accumulated HONO and ClNO(2) was approximately equal. Incorporating the different vertical distributions by integrating through the boundary and residual layers demonstrated that nighttime-accumulated ClNO(2) produced nine times as many radicals as nighttime-accumulated HONO. A comprehensive radical budget at ground level demonstrated that nighttime radical reservoirs accounted for 8% of total radicals formed and that they were the dominant radical source between sunrise and 09:00 Pacific daylight time (PDT). These data show that vertical gradients of radical precursors should be taken into account in radical budgets, particularly with respect to HONO.
Review of Scientific Instruments | 2006
William P. Dubé; Steven S. Brown; Hans D. Osthoff; Maya R. Nunley; Steven J. Ciciora; Mark Wayne Paris; R. J. McLaughlin; A. R. Ravishankara
This article describes a cavity ring-down spectrometer (CaRDS) specifically designed and constructed for installation on the NOAA WP-3D Orion (P-3) aircraft for sensitive, rapid in situ measurement of NO3 and N2O5. While similar to our previously described CaRDS instrument, this instrument has significant improvements in the signal-to-noise ratio, the time resolution, and in overall size and weight. Additionally, the instrument utilizes a custom-built, automated filter changer that was designed and constructed to meet the requirement for removal of particulate matter in the airflow while allowing fully autonomous instrument operation. The CaRDS instrument has a laboratory detection sensitivity of 4×10−11cm−1 in absorbance or 0.1pptv (pptv denotes parts per trillion volume) of NO3 in a 1s average, although the typical detection sensitivities encountered in the field were 0.5pptv for NO3 and 1pptv for N2O5. The instrument accuracy is 25% for NO3 and 20%–40% for N2O5, limited mainly by the uncertainty in the...
Aerosol Science and Technology | 2007
Tahllee Baynard; Edward R. Lovejoy; Anders Pettersson; Steven S. Brown; D. A. Lack; Hans D. Osthoff; Paola Massoli; Steve Ciciora; William P. Dubé; A. R. Ravishankara
This paper describes the design and application of a pulsed cavity ring-down aerosol extinction spectrometer (CRD-AES) for in-situ atmospheric measurement of the aerosol extinction coefficient and its relative humidity dependence. This CRD-AES measures the aerosol extinction coefficient (σ ep) at 355 nm, 532 nm, 683 nm, and 1064 nm with a minimal size dependent bias for particles with diameter less than 10 μm. The σ ep at 532 nm is measured with an accuracy of 1% when extinction is ≥ 10 Mm −1 . The precision is limited by statistical fluctuations within the small optical volume and the time resolution of extinction at 2% uncertainty for various air mass types is evaluated. The CRD-AES is configured with two separate cavity ring-down cells for measurement of the extinction coefficient at 532 nm. This allows the determination of the RH dependence of extinction at 532 nm through independent RH control of the sample for each measurement. Gas phase absorption and minimization of potential interferences is also considered.
Science | 2008
James M. Roberts; Hans D. Osthoff; Steven S. Brown; A. R. Ravishankara
Molecular chlorine (Cl2) is an important yet poorly understood trace constituent of the lower atmosphere. Although a number of mechanisms have been proposed for the conversion of particle-bound chloride (Cl‐) to gas-phase Cl2, the detailed processes involved remain uncertain. Here, we show that reaction of dinitrogen pentoxide (N2O5) with aerosol-phase chloride yields Cl2 at low pH (<2) and should constitute an important halogen activation pathway in the atmosphere.
Atmospheric Chemistry and Physics | 2016
Nga L. Ng; Steven S. Brown; A. T. Archibald; Elliot Atlas; R. C. Cohen; J. N. Crowley; Douglas A. Day; Neil M. Donahue; Juliane L. Fry; Hendrik Fuchs; Robert J. Griffin; Marcelo I. Guzman; Hartmut Herrmann; Alma Hodzic; Yoshiteru Iinuma; Jose L. Jimenez; Astrid Kiendler-Scharr; Ben H. Lee; Deborah Luecken; Jingqiu Mao; Robert McLaren; Anke Mutzel; Hans D. Osthoff; Bin Ouyang; B. Picquet-Varrault; U. Platt; Havala O. T. Pye; Yinon Rudich; Rebecca H. Schwantes; Manabu Shiraiwa
Oxidation of biogenic volatile organic compounds (BVOC) by the nitrate radical (NO3) represents one of the important interactions between anthropogenic emissions related to combustion and natural emissions from the biosphere. This interaction has been recognized for more than 3 decades, during which time a large body of research has emerged from laboratory, field, and modeling studies. NO3-BVOC reactions influence air quality, climate and visibility through regional and global budgets for reactive nitrogen (particularly organic nitrates), ozone, and organic aerosol. Despite its long history of research and the significance of this topic in atmospheric chemistry, a number of important uncertainties remain. These include an incomplete understanding of the rates, mechanisms, and organic aerosol yields for NO3-BVOC reactions, lack of constraints on the role of heterogeneous oxidative processes associated with the NO3 radical, the difficulty of characterizing the spatial distributions of BVOC and NO3 within the poorly mixed nocturnal atmosphere, and the challenge of constructing appropriate boundary layer schemes and non-photochemical mechanisms for use in state-of-the-art chemical transport and chemistry–climate models. This review is the result of a workshop of the same title held at the Georgia Institute of Technology in June 2015. The first half of the review summarizes the current literature on NO3-BVOC chemistry, with a particular focus on recent advances in instrumentation and models, and in organic nitrate and secondary organic aerosol (SOA) formation chemistry. Building on this current understanding, the second half of the review outlines impacts of NO3-BVOC chemistry on air quality and climate, and suggests critical research needs to better constrain this interaction to improve the predictive capabilities of atmospheric models.
Nature | 2016
John Liggio; Shao-Meng Li; Katherine Hayden; Youssef M. Taha; Craig Stroud; Andrea Darlington; Brian D. Drollette; Mark Gordon; Patrick A. Lee; Peter Liu; Amy Leithead; Samar G. Moussa; Danny Wang; Jason O’Brien; Richard L. Mittermeier; Jeffrey R. Brook; Gang Lu; Ralf M. Staebler; Yuemei Han; Travis W. Tokarek; Hans D. Osthoff; Paul A. Makar; Junhua Zhang; Desiree L. Plata; D. R. Gentner
Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.
Physical Chemistry Chemical Physics | 2007
Hans D. Osthoff; Michael J. Pilling; A. R. Ravishankara; Steven S. Brown
The reaction NO3 + NO2 <--> N2O5 was studied over the 278-323 K temperature range. Concentrations of NO3, N2O5, and NO2 were measured simultaneously in a 3-channel cavity ring-down spectrometer. Equilibrium constants were determined over atmospherically relevant concentration ranges of the three species in both synthetic samples in the laboratory and ambient air samples in the field. A fit to the laboratory data yielded Keq = (5.1 +/- 0.8) x 10(-27) x e((10871 +/- 46)/7) cm3 molecule(-1). The temperature dependence of the NO3 absorption cross-section at 662 nm was investigated over the 298-388 K temperature range. The line width was found to be independent of temperature, in agreement with previous results. New data for the peak cross section (662.2 nm, vacuum wavelength) were combined with previous measurements in the 200 K-298 K region. A least-squares fit to the combined data gave sigma = [(4.582 +/- 0.096) - (0.00796 +/- 0.00031) x T] x 10(-17) cm2 molecule(-1).
Analytical Chemistry | 2011
Robert D. Thaler; Levi H Mielke; Hans D. Osthoff
Nitryl chloride (ClNO(2)) is an important nocturnal nitrogen oxide reservoir species in the troposphere. Here, we report a novel method, thermal dissociation cavity ring-down spectroscopy (TD-CRDS), to quantify ClNO(2) mixing ratios with tens of parts-per-trillion by volume (pptv) sensitivity. The mixing ratios of ClNO(2) are determined by blue diode laser CRDS of NO(2), produced from quantitative thermal dissociation of ClNO(2) in an inlet heated to 450 °C, relative to NO(2) observed in an unheated reference channel. ClNO(2) was generated by passing Cl(2) gas over a slurry containing a 1:10 mixture of NaNO(2) and NaCl. The TD-CRDS response was evaluated using parallel measurements of ClNO(2) by chemical ionization mass spectrometry (CIMS) using I(-) as the reagent ion and NO(y) (= NO + NO(2) + HNO(3) + ΣRO(2)NO(2) + ΣRONO(2) + HONO + 2N(2)O(5) + ClNO(2) + ...) chemiluminescence (CL). The linear dynamic range extends from the detection limit of 20 pptv (1 σ, 1 min) to 30 parts-per-billion by volume (ppbv), the highest mixing ratio tested. The ClNO(2) TD profile overlaps with those of alkyl nitrates, which has implications for nocturnal measurements of total alkyl nitrate (ΣAN = ΣRONO(2)) abundances by thermal dissociation (with detection as NO(2)) in ambient air.
Review of Scientific Instruments | 2009
Dipayan Paul; Amanda Furgeson; Hans D. Osthoff
A novel measurement technique, thermal dissociation cavity ring-down spectroscopy (TD-CRDS), for rapid (1 s time resolution) and sensitive (precision approximately 100 parts per trillion by volume (10(-12); pptv)) quantification of total peroxy nitrate (SigmaPN) and total alkyl nitrate (SigmaAN) abundances in laboratory-generated gas mixtures is described. The organic nitrates are dissociated in a heated inlet to produce NO(2), whose concentration is monitored by pulsed-laser CRDS at 532 nm. Mixing ratios are determined by difference relative to a cold inlet reference channel. Conversion of laboratory-generated mixtures of AN in zero air (at an inlet temperature of 450 degrees C) is quantitative over a wide range of mixing ratios (0-100 parts per billion by volume (10(-9), ppbv)), as judged from simultaneous measurements of NO(y) using a commercial NO-O(3) chemiluminescence monitor. Conversion of PN is quantitative up to about 4 ppbv (at an inlet temperature of 250 degrees C); at higher concentrations, the measurements are affected by recombination reactions of the dissociation products. The results imply that TD-CRDS can be used as a generic detector of dilute mixtures of organic nitrates in air at near-ambient concentration levels in laboratory experiments. Potential applications of the TD-CRDS technique in the laboratory are discussed.
Collaboration
Dive into the Hans D. Osthoff's collaboration.
Cooperative Institute for Research in Environmental Sciences
View shared research outputs