Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans de Haard is active.

Publication


Featured researches published by Hans de Haard.


Molecular Cancer Therapeutics | 2008

Improved tumor targeting of anti–epidermal growth factor receptor Nanobodies through albumin binding: taking advantage of modular Nanobody technology

Bernard M. Tijink; Toon Laeremans; Marianne Budde; Marijke Stigter-van Walsum; Torsten Dreier; Hans de Haard; C. René Leemans; Guus A.M.S. van Dongen

The ∼15-kDa variable domains of camelid heavy-chain-only antibodies (called Nanobodies) can easily be formatted as multivalent or multispecific single-chain proteins. Because of fast excretion, however, they are less suitable for therapy of cancer. In this study, we aimed for improved tumor targeting of a bivalent anti–epidermal growth factor receptor (EGFR) Nanobody (αEGFR-αEGFR) by fusion to a Nanobody unit binding to albumin (αAlb). Biodistributions of αEGFR-αEGFR, αEGFR-αEGFR-αAlb (∼50 kDa), αTNF-αTNF-αAlb (control, binding tumor necrosis factor-α), and the ∼150-kDa anti-EGFR antibody cetuximab were compared in A431 xenograft-bearing mice. The proteins were radiolabeled with 177Lu to facilitate quantification. Tumor uptake of 177Lu-αEGFR-αEGFR decreased from 5.0 ± 1.4 to 1.1 ± 0.1 %ID/g between 6 and 72 h after injection. Due to its rapid blood clearance, tumor-to-blood ratios >80 were obtained within 6 h after injection. Blood clearance became dramatically slower and tumor uptake became significantly higher by introduction of αAlb. Blood levels of αEGFR-αEGFR-αAlb were 21.2 ± 2.5, 11.9 ± 0.6, and 4.0 ± 1.4 and tumor levels were 19.4 ± 5.5, 35.2 ± 7.5, and 28.0 ± 6.8 %ID/g at 6, 24, and 72 h after injection, respectively. Tumor uptake was at least as high as for cetuximab (15.5 ± 3.9, 27.1 ± 7.9, and 25.6 ± 6.1 %ID/g) and significantly higher than for αTNF-αTNF-αAlb. αEGFR-αEGFR-αAlb showed faster and deeper tumor penetration than cetuximab. These data show that simple fusion of αEGFR and αAlb building blocks results in a bifunctional Nanobody format, which seems more favorable for therapy as far as pharmacokinetics and tumor deposition are concerned. [Mol Cancer Ther 2008;7(8):2288–97]


Proceedings of the National Academy of Sciences of the United States of America | 2010

CXCR4 nanobodies (VHH-based single variable domains) potently inhibit chemotaxis and HIV-1 replication and mobilize stem cells

Sven Jähnichen; Christophe Blanchetot; David Maussang; Maria Gonzalez-Pajuelo; Ken Y. Chow; Leontien Bosch; Sindi De Vrieze; Benedikte Serruys; Hans Ulrichts; Wesly Vandevelde; Michael A. Saunders; Hans de Haard; Dominique Schols; Rob Leurs; Peter Vanlandschoot; Theo Verrips; Martine J. Smit

The important family of G protein-coupled receptors has so far not been targeted very successfully with conventional monoclonal antibodies. Here we report the isolation and characterization of functional VHH-based immunoglobulin single variable domains (or nanobodies) against the chemokine receptor CXCR4. Two highly selective monovalent nanobodies, 238D2 and 238D4, were obtained using a time-efficient whole cell immunization, phage display, and counterselection method. The highly selective VHH-based immunoglobulin single variable domains competitively inhibited the CXCR4-mediated signaling and antagonized the chemoattractant effect of the CXCR4 ligand CXCL12. Epitope mapping showed that the two nanobodies bind to distinct but partially overlapping sites in the extracellular loops. Short peptide linkage of 238D2 with 238D4 resulted in significantly increased affinity for CXCR4 and picomolar activity in antichemotactic assays. Interestingly, the monovalent nanobodies behaved as neutral antagonists, whereas the biparatopic nanobodies acted as inverse agonists at the constitutively active CXCR4-N3.35A. The CXCR4 nanobodies displayed strong antiretroviral activity against T cell-tropic and dual-tropic HIV-1 strains. Moreover, the biparatopic nanobody effectively mobilized CD34-positive stem cells in cynomolgus monkeys. Thus, the nanobody platform may be highly effective at generating extremely potent and selective G protein-coupled receptor modulators.


Applied and Environmental Microbiology | 2005

Isolation of llama antibody fragments for prevention of dandruff by phage display in shampoo

Edward Dolk; Marcel van der Vaart; David Lutje Hulsik; Gert Vriend; Hans de Haard; Silvia Spinelli; Christian Cambillau; Leon G. J. Frenken; Theo Verrips

ABSTRACT As part of research exploring the feasibility of using antibody fragments to inhibit the growth of organisms implicated in dandruff, we isolated antibody fragments that bind to a cell surface protein of Malassezia furfur in the presence of shampoo. We found that phage display of llama single-domain antibody fragments (VHHs) can be extended to very harsh conditions, such as the presence of shampoo containing nonionic and anionic surfactants. We selected several VHHs that bind to the cell wall protein Malf1 of M. furfur, a fungus implicated in causing dandruff. In addition to high stability in the presence of shampoo, these VHHs are also stable under other denaturing conditions, such as high urea concentrations. Many of the stable VHHs were found to contain arginine at position 44. Replacement of the native amino acid at position 44 with arginine in the most stable VHH that lacked this arginine resulted in a dramatic further increase in the stability. The combination of the unique properties of VHHs together with applied phage display and protein engineering is a powerful method for obtaining highly stable VHHs that can be used in a wide range of applications.


Journal of Virology | 2008

Llama Antibody Fragments with Cross-Subtype Human Immunodeficiency Virus Type 1 (HIV-1)-Neutralizing Properties and High Affinity for HIV-1 gp120

Anna Forsman; Els Beirnaert; Marlén M. I. Aasa-Chapman; Bart Hoorelbeke; Karolin Hijazi; Willie Koh; Vanessa Tack; Agnieszka Szynol; Charles Kelly; Áine McKnight; Theo Verrips; Hans de Haard; Robin A. Weiss

ABSTRACT Members of the Camelidae family produce immunoglobulins devoid of light chains. We have characterized variable domains of these heavy chain antibodies, the VHH, from llamas immunized with human immunodeficiency virus type 1 (HIV-1) envelope protein gp120 in order to identify VHH that can inhibit HIV-1 infection. To increase the chances of isolating neutralizing VHH, we employed a functional selection approach, involving panning of phage libraries expressing the VHH repertoire on recombinant gp120, followed by a competitive elution with soluble CD4. By immunizing with gp120 derived from an HIV-1 subtype B′/C primary isolate, followed by panning on gp120 from HIV-1 isolates of subtypes A, B, and C, we could select for VHH with cross-subtype neutralizing activity. Three VHH able to neutralize HIV-1 primary isolates of subtypes B and C were characterized. These bound to recombinant gp120 with affinities close to the suggested affinity ceiling for in vivo-maturated antibodies and competed with soluble CD4 for this binding, indicating that their mechanism of neutralization involves interacting with the functional envelope spike prior to binding to CD4. The most potent VHH in terms of low 50% inhibitory concentration (IC50) and IC90 values and cross-subtype reactivity was A12. These results indicate that camelid VHH can be potent HIV-1 entry inhibitors. Since VHH are stable and can be produced at a relatively low cost, they may be considered for applications such as HIV-1 microbicide development. Antienvelope VHH might also prove useful in defining neutralizing and nonneutralizing epitopes on HIV-1 envelope proteins, with implications for HIV-1 vaccine design.


PLOS ONE | 2011

Llama-Derived Single Domain Antibodies to Build Multivalent, Superpotent and Broadened Neutralizing Anti-Viral Molecules

Anna Hultberg; Nigel J. Temperton; Valérie Rosseels; Mireille Koenders; Maria Gonzalez-Pajuelo; Bert Schepens; Lorena Itatí Ibañez; Peter Vanlandschoot; Joris P. Schillemans; Michael John Scott Saunders; Robin A. Weiss; Xavier Saelens; José A. Melero; C. Theo Verrips; Steven Van Gucht; Hans de Haard

For efficient prevention of viral infections and cross protection, simultaneous targeting of multiple viral epitopes is a powerful strategy. Llama heavy chain antibody fragments (VHH) against the trimeric envelope proteins of Respiratory Syncytial Virus (Fusion protein), Rabies virus (Glycoprotein) and H5N1 Influenza (Hemagglutinin 5) were selected from llama derived immune libraries by phage display. Neutralizing VHH recognizing different epitopes in the receptor binding sites on the spikes with affinities in the low nanomolar range were identified for all the three viruses by viral neutralization assays. By fusion of VHH with variable linker lengths, multimeric constructs were made that improved neutralization potencies up to 4,000-fold for RSV, 1,500-fold for Rabies virus and 75-fold for Influenza H5N1. The potencies of the VHH constructs were similar or better than best performing monoclonal antibodies. The cross protection capacity against different viral strains was also improved for all three viruses, both by multivalent (two or three identical VHH) and biparatopic (two different VHH) constructs. By combining a VHH neutralizing RSV subtype A, but not subtype B with a poorly neutralizing VHH with high affinity for subtype B, a biparatopic construct was made with low nanomolar neutralizing potency against both subtypes. Trivalent anti-H5N1 VHH neutralized both Influenza H5N1 clade1 and 2 in a pseudotype assay and was very potent in neutralizing the NIBRG-14 Influenza H5N1 strain with IC50 of 9 picomolar. Bivalent and biparatopic constructs against Rabies virus cross neutralized both 10 different Genotype 1 strains and Genotype 5. The results show that multimerization of VHH fragments targeting multiple epitopes on a viral trimeric spike protein is a powerful tool for anti-viral therapy to achieve “best-in-class” and broader neutralization capacity.


Journal of Bacteriology | 2005

Llama Antibodies against a Lactococcal Protein Located at the Tip of the Phage Tail Prevent Phage Infection

Hans de Haard; Sandra Bezemer; Aat M. Ledeboer; Wally H. Müller; Piet J. Boender; Sylvain Moineau; Marie-Cecile Coppelmans; Arie J. Verkleij; Leon G. J. Frenken; C. Theo Verrips

Bacteriophage p2 belongs to the most prevalent lactococcal phage group (936) responsible for considerable losses in industrial production of cheese. Immunization of a llama with bacteriophage p2 led to higher titers of neutralizing heavy-chain antibodies (i.e., devoid of light chains) than of the classical type of immunoglobulins. A panel of p2-specific single-domain antibody fragments was obtained using phage display technology, from which a group of potent neutralizing antibodies were identified. The antigen bound by these antibodies was identified as a protein with a molecular mass of 30 kDa, homologous to open reading frame 18 (ORF18) of phage sk1, another 936-like phage for which the complete genomic sequence is available. By the use of immunoelectron microscopy, the protein is located at the tip of the tail of the phage particle. The addition of purified ORF18 protein to a bacterial culture suppressed phage infection. This result and the inhibition of cell lysis by anti-ORF18 protein antibodies support the conclusion that the ORF18 protein plays a crucial role in the interaction of bacteriophage p2 with the surface receptors of Lactococcus lactis.


European Journal of Human Genetics | 2005

Protein studies in dysferlinopathy patients using llama-derived antibody fragments selected by phage display

Yanchao Huang; Peter Verheesen; Andreas Roussis; Wendy S. Frankhuizen; Ieke B. Ginjaar; Faye Haldane; S. Laval; Louise V. B. Anderson; Theo Verrips; Rune R. Frants; Hans de Haard; Kate Bushby; Johan T. den Dunnen; Silvère M. van der Maarel

Mutations in dysferlin, a member of the fer1-like protein family that plays a role in membrane integrity and repair, can give rise to a spectrum of neuromuscular disorders with phenotypic variability including limb-girdle muscular dystrophy 2B, Myoshi myopathy and distal anterior compartment myopathy. To improve the tools available for understanding the pathogenesis of the dysferlinopathies, we have established a large source of highly specific antibody reagents against dysferlin by selection of heavy-chain antibody fragments originating from a nonimmune llama-derived phage-display library. By utilizing different truncated forms of recombinant dysferlin for selection and diverse selection methodologies, antibody fragments with specificity for two different dysferlin domains could be identified. The selected llama antibody fragments are functional in Western blotting, immunofluorescence microscopy and immunoprecipitation applications. Using these antibody fragments, we found that calpain 3, which shows a secondary reduction in the dysferlinopathies, interacts with dysferlin.


Science Translational Medicine | 2015

Monoclonal antibodies against GARP/TGF-β1 complexes inhibit the immunosuppressive activity of human regulatory T cells in vivo

Julia Cuende; Stéphanie Liénart; Olivier Dedobbeleer; Bas van der Woning; Gitte De Boeck; Julie Stockis; Caroline Huygens; Didier Colau; Joan Somja; Philippe Delvenne; Muriel Hannon; Frédéric Baron; Laure Dumoutier; Jean-Christophe Renauld; Hans de Haard; Michael A. Saunders; Pierre Coulie; Sophie Lucas

Monoclonal antibodies that inhibit human Treg function in vivo may be used therapeutically in cancer or infections. Immunotherapy according to GARP Regulatory T cells (Tregs) play a critical role in preventing autoimmunity but can be co-opted by cancer cells to block immune surveillance of tumors. Cuende et al. report that a membrane protein, GARP, which binds transforming growth factor–β1 (TGF-β1) on the cell surface of Tregs, is involved in Treg-mediated inhibition of immune responses. What’s more, the authors develop anti-GARP monoclonal antibodies that block TGF-β1 production by Tregs and inhibit the activity of these cells in a xenogeneic mouse model of graft-versus-host disease. Thus, blocking GARP, either alone or in combination with other checkpoint inhibitors, could add to our arsenal for cancer immunotherapy. Regulatory T cells (Tregs) are essential to prevent autoimmunity, but excessive Treg function contributes to cancer progression by inhibiting antitumor immune responses. Tregs exert contact-dependent inhibition of immune cells through the production of active transforming growth factor–β1 (TGF-β1). On the Treg cell surface, TGF-β1 is in an inactive form bound to membrane protein GARP and then activated by an unknown mechanism. We demonstrate that GARP is involved in this activation mechanism. Two anti-GARP monoclonal antibodies were generated that block the production of active TGF-β1 by human Tregs. These antibodies recognize a conformational epitope that requires amino acids GARP137–139 within GARP/TGF-β1 complexes. A variety of antibodies recognizing other GARP epitopes did not block active TGF-β1 production by Tregs. In a model of xenogeneic graft-versus-host disease in NSG mice, the blocking antibodies inhibited the immunosuppressive activity of human Tregs. These antibodies may serve as therapeutic tools to boost immune responses to infection or cancer via a mechanism of action distinct from that of currently available immunomodulatory antibodies. Used alone or in combination with tumor vaccines or antibodies targeting the CTLA4 or PD1/PD-L1 pathways, blocking anti-GARP antibodies may improve the efficiency of cancer immunotherapy.


Journal of Biological Chemistry | 2010

Generation of a Family-specific Phage Library of Llama Single Chain Antibody Fragments That Neutralize HIV-1

Willie Wee-Lee Koh; Soren Steffensen; Maria Gonzalez-Pajuelo; Bart Hoorelbeke; Andrea Gorlani; Agnieszka Szynol; Anna Forsman; Marlén M. I. Aasa-Chapman; Hans de Haard; Theo Verrips; Robin A. Weiss

Recently, we described llama antibody fragments (VHH) that can neutralize human immunodeficiency virus, type 1 (HIV-1). These VHH were obtained after selective elution of phages carrying an immune library raised against gp120 of HIV-1 subtype B/C CN54 with soluble CD4. We describe here a new, family-specific approach to obtain the largest possible diversity of related VHH that compete with soluble CD4 for binding to the HIV-1 envelope glycoprotein. The creation of this family-specific library of homologous VHH has enabled us to isolate phages carrying similar nucleotide sequences as the parental VHH. These VHH displayed varying binding affinities and neutralization phenotypes to a panel of different strains and subtypes of HIV-1. Sequence analysis of the homologs showed that the C-terminal three amino acids of the CDR3 loop were crucial in determining the specificity of these VHH for different subtype C HIV-1 strains. There was a positive correlation between affinity of VHH binding to gp120 of HIV-1 IIIB and the breadth of neutralization of diverse HIV-1 envelopes. The family-specific approach has therefore allowed us to better understand the interaction of the CD4-binding site antibodies with virus strain specificity and has potential use for the bioengineering of antibodies and HIV-1 vaccine development.


PLOS ONE | 2012

Llama Antibody Fragments Recognizing Various Epitopes of the CD4bs Neutralize a Broad Range of HIV-1 Subtypes A, B and C

Nika M. Strokappe; Agnieszka Szynol; Marlén M. I. Aasa-Chapman; Andrea Gorlani; Anna Forsman Quigley; David Lutje Hulsik; Lei Chen; Robin A. Weiss; Hans de Haard; Theo Verrips

Many of the neutralising antibodies, isolated to date, display limited activities against the globally most prevalent HIV-1 subtypes A and C. Therefore, those subtypes are considered to be an important target for antibody-based therapy. Variable domains of llama heavy chain antibodies (VHH) have some superior properties compared with classical antibodies. Therefore we describe the application of trimeric forms of envelope proteins (Env), derived from HIV-1 of subtype A and B/C, for a prolonged immunization of two llamas. A panel of VHH, which interfere with CD4 binding to HIV-1 Env were selected with use of panning. The results of binding and competition assays to various Env, including a variant with a stabilized CD4-binding state (gp120Ds2), cross-competition experiments, maturation analysis and neutralisation assays, enabled us to classify the selected VHH into three groups. The VHH of group I were efficient mainly against viruses of subtype A, C and B′/C. The VHH of group II resemble the broadly neutralising antibody (bnmAb) b12, neutralizing mainly subtype B and C viruses, however some had a broader neutralisation profile. A representative of the third group, 2E7, had an even higher neutralization breadth, neutralizing 21 out of the 26 tested strains belonging to the A, A/G, B, B/C and C subtypes. To evaluate the contribution of certain amino acids to the potency of the VHH a small set of the mutants were constructed. Surprisingly this yielded one mutant with slightly improved neutralisation potency against 92UG37.A9 (subtype A) and 96ZM651.02 (subtype C). These findings and the well-known stability of VHH indicate the potential application of these VHH as anti-HIV-1 microbicides.

Collaboration


Dive into the Hans de Haard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin A. Weiss

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gitte De Boeck

Ghent University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge