Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Elmlund is active.

Publication


Featured researches published by Hans Elmlund.


Science | 2014

Facet development during platinum nanocube growth

Hong-Gang Liao; Danylo Zherebetskyy; Huolin L. Xin; Cory Czarnik; Peter Ercius; Hans Elmlund; Ming Pan; Lin Wang Wang; Haimei Zheng

Watching platinum nanocube growth Size and shape drive the properties of metal nanoparticles. Understanding the factors that affect their growth is central to making use of the particles in a range of applications. Liao et al. tracked the growth of platinum nanoparticle shapes at high resolution using state-of-the-art liquid cells for in situ monitoring inside an electron microscope. The authors tracked changes in the growth rates at different crystal facets caused by differences in the mobility of the capping ligand. Science, this issue p. 916 Observation of atomic facet development during platinum nanocube growth reveals shape control. An understanding of how facets of a nanocrystal develop is critical for controlling nanocrystal shape and designing novel functional materials. However, the atomic pathways of nanocrystal facet development are mostly unknown because of the lack of direct observation. We report the imaging of platinum nanocube growth in a liquid cell using transmission electron microscopy with high spatial and temporal resolution. The growth rates of all low index facets are similar until the {100} facets stop growth. The continuous growth of the rest facets leads to a nanocube. Our calculation shows that the much lower ligand mobility on the {100} facets is responsible for the arresting of {100} growing facets. These findings shed light on nanocrystal shape-control mechanisms and future design of nanomaterials.


Proceedings of the National Academy of Sciences of the United States of America | 2006

The cyclin-dependent kinase 8 module sterically blocks Mediator interactions with RNA polymerase II

Hans Elmlund; Vera Baraznenok; Martin Lindahl; Camilla O. Samuelsen; Philip J.B. Koeck; Steen Holmberg; Hans Hebert; Claes M. Gustafsson

CDK8 (cyclin-dependent kinase 8), along with CycC, Med12, and Med13, form a repressive module (the Cdk8 module) that prevents RNA polymerase II (pol II) interactions with Mediator. Here, we report that the ability of the Cdk8 module to prevent pol II interactions is independent of the Cdk8-dependent kinase activity. We use electron microscopy and single-particle reconstruction to demonstrate that the Cdk8 module forms a distinct structural entity that binds to the head and middle region of Mediator, thereby sterically blocking interactions with pol II.


Science | 2013

Architecture of an RNA Polymerase II Transcription Pre-Initiation Complex

Kenji Murakami; Hans Elmlund; Nir Kalisman; David A. Bushnell; Christopher M. Adams; Maia Azubel; Dominika Elmlund; Yael Levi-Kalisman; Xin Liu; Brian J. Gibbons; Michael Levitt; Roger D. Kornberg

Introduction RNA polymerase II (pol II) is capable of RNA synthesis but is unable to recognize a promoter or to initiate transcription. For these essential functions, a set of general transcription factors (GTFs)—termed TFIIB, -D, -E, -F, and -H—is required. The GTFs escort promoter DNA through the stages of recruitment to pol II, unwinding to create a transcription bubble, descent into the pol II cleft, and RNA synthesis to a length of 25 residues and transition to a stable elongating complex. The structural basis for these transactions is largely unknown. Only TFIIB has been solved by means of x-ray diffraction, in a complex with pol II. We report on the structure of a complete set of GTFs, assembled with pol II and promoter DNA in a 32-protein, 1.5 megaDalton “pre-initiation complex” (PIC), as revealed with cryo-electron microscopy (cryo-EM) and chemical cross-linking. A section through the cryo-EM structure of the complete PIC. Cut surfaces are shown in gray. Locations of densities due to pol II and the GTFs (TFIIA, TFIIB C-terminal domain, TBP subunit of TFIID, TFIIE, and TFIIH, including its helicase subunit Ssl2 and its kinase module TFIIK) are indicated. Density due to DNA is indicated by the superimposed double helix model. TFIIF is not seen in this section. Methods Three technical advances enabled the structural analysis of the PIC. First, a procedure was established for the preparation of a stable, abundant PIC. Both the homogeneity and functional activity of the purified PIC were demonstrated. Second, an algorithm was developed for alignment of cryo-EM images that requires no prior information (no “search model”) and that can distinguish multiple conformational states. Last, a computational method was devised for determining the arrangement of protein subunits and domains within a cryo-EM density map from a pattern of chemical cross-linking. Results The density map of the PIC showed a pronounced division in two parts, one pol II and the other the GTFs. Promoter DNA followed a straight path, in contact with the GTFs but well separated from pol II, suspended above the active center cleft. Cross-linking and computational analysis led to a most probable arrangement of the GTFs, with IIB at the upstream end of the pol II cleft, followed by IIF, IIE, and IIH. The Ssl2 helicase subunit of IIH was located at the downstream end of the cleft. Discussion A principle of the PIC revealed by this work is the interaction of promoter DNA with the GTFs and not with pol II. The GTFs position the DNA above the pol II cleft, but interaction with pol II can only occur after melting of the DNA to enable bending for entry in the cleft. Contact of the DNA with the Ssl2 helicase in the PIC leads to melting (in the presence of adenosine triphosphatase). Cryo-EM by others, based on sequential assembly and analysis of partial complexes rather than of the complete PIC, did not show a separation between pol II and GTFs and revealed direct DNA–pol II interaction. The discrepancy calls attention to a role of the GTFs in preventing direct DNA-polymerase interaction. Pre-Initiation Complex in 3D The regulation of gene expression is critical for almost every aspect of biology. Transcription—generating an RNA copy of a gene—requires the assembly of a large pre-initiation complex (PIC) at every RNA polymerase II (pol II) promoter. Roughly 32 proteins—the subunits of pol II and the general transcription factors—form a PIC that can recognize a minimal TATA-box promoter, select a transcription start site, and synthesize a nascent transcript. Murakami et al. (p. 10.1126/science.1238724, published online 26 September; see the Perspective by Malik and Roeder) determined the three-dimensional map of the Saccharomyces cerevisiae 30-subunit PIC using cryo-electron microscopy. The saddle-shaped TATA binding protein, the boot-shaped transcription factor IIA (TFIIA), and promoter DNA ∼27 bp downstream of the TATA-box could all be seen. Cross-linking and mass spectrometry was used to determine the spatial proximity of the 30 subunits, revealing that the PIC forms two lobes with TFIIF forming a bridge between them. The yeast transcription pre-initiation complex has a bi-lobed structure that may reflect the assembly pathway of the complex. [Also see Perspective by Malik and Roeder] The protein density and arrangement of subunits of a complete, 32-protein, RNA polymerase II (pol II) transcription pre-initiation complex (PIC) were determined by means of cryogenic electron microscopy and a combination of chemical cross-linking and mass spectrometry. The PIC showed a marked division in two parts, one containing all the general transcription factors (GTFs) and the other pol II. Promoter DNA was associated only with the GTFs, suspended above the pol II cleft and not in contact with pol II. This structural principle of the PIC underlies its conversion to a transcriptionally active state; the PIC is poised for the formation of a transcription bubble and descent of the DNA into the pol II cleft.


Science | 2015

3D structure of individual nanocrystals in solution by electron microscopy

Jungwon Park; Hans Elmlund; Peter Ercius; Jong Min Yuk; David T. Limmer; Qian Chen; Kwanpyo Kim; Sang Hoon Han; David A. Weitz; Alex Zettl; A. Paul Alivisatos

Looking at teeny tiny platinum particles Electron microscopy is a powerful technique for taking snapshots of particles or images at near-atomic resolution. Park et al. studied free-floating platinum nanoparticles using electron microscopy and liquid cells (see the Perspective by Colliex). Using analytical techniques developed to study biological molecules, they reconstructed the threedimensional features of the Pt particles at near-atomic resolution. This approach has the scope to study a mixed population of particles one at a time and to study their synthesis as it occurs in solution. Science, this issue p. 290; see also p. 232 Individual platinum nanoparticles are imaged in solution at near-atomic resolution. [Also see Perspective by Colliex] Knowledge about the synthesis, growth mechanisms, and physical properties of colloidal nanoparticles has been limited by technical impediments. We introduce a method for determining three-dimensional (3D) structures of individual nanoparticles in solution. We combine a graphene liquid cell, high-resolution transmission electron microscopy, a direct electron detector, and an algorithm for single-particle 3D reconstruction originally developed for analysis of biological molecules. This method yielded two 3D structures of individual platinum nanocrystals at near-atomic resolution. Because our method derives the 3D structure from images of individual nanoparticles rotating freely in solution, it enables the analysis of heterogeneous populations of potentially unordered nanoparticles that are synthesized in solution, thereby providing a means to understand the structure and stability of defects at the nanoscale.


Journal of Structural Biology | 2012

SIMPLE: Software for ab initio reconstruction of heterogeneous single-particles.

Dominika Elmlund; Hans Elmlund

The open source software suite SIMPLE: Single-particle IMage Processing Linux Engine provides data analysis methods for single-particle cryo-electron microscopy (cryo-EM). SIMPLE addresses the problem of obtaining 3D reconstructions from 2D projections only, without using an input reference volume for approximating orientations. The SIMPLE reconstruction algorithm is tailored to asymmetrical and structurally heterogeneous single-particles. Its basis is global optimization with the use of Fourier common lines. The advance that enables ab initio reconstruction and heterogeneity analysis is the separation of the tasks of in-plane alignment and projection direction determination via bijective orientation search - a new concept in common lines-based strategies. Bijective orientation search divides the configuration space into two groups of paired parameters that are optimized separately. The first group consists of the rotations and shifts in the plane of the projection; the second group consists of the projection directions and state assignments. In SIMPLE, ab initio reconstruction is feasible because the 3D in-plane alignment is approximated using reference-free 2D rotational alignment. The subsequent common lines-based search hence searches projection directions and states only. Thousands of class averages are analyzed simultaneously in a matter of hours. Novice SIMPLE users get a head start via the well documented front-end. The structured, object-oriented back-end invites advanced users to develop new alignment and reconstruction algorithms. An overview of the package is presented together with benchmarks on simulated data. Executable binaries, source code, and documentation are available at http://simple.stanford.edu.


Structural Dynamics | 2015

The linac coherent light source single particle imaging road map

Andy Aquila; A. Barty; Christoph Bostedt; Sébastien Boutet; G. A. Carini; Daniel P. DePonte; P. S. Drell; Sebastian Doniach; K. H. Downing; T. Earnest; Hans Elmlund; Veit Elser; M. Gühr; Janos Hajdu; Jerome Hastings; Stefan P. Hau-Riege; Zhirong Huang; E. E. Lattman; Filipe R. N. C. Maia; Stefano Marchesini; A. Ourmazd; C. Pellegrini; Robin Santra; Ilme Schlichting; Christian G. Schroer; John C. Spence; I. A. Vartanyants; Soichi Wakatsuki; William I. Weis; Garth J. Williams

Intense femtosecond x-ray pulses from free-electron laser sources allow the imaging of individual particles in a single shot. Early experiments at the Linac Coherent Light Source (LCLS) have led to rapid progress in the field and, so far, coherent diffractive images have been recorded from biological specimens, aerosols, and quantum systems with a few-tens-of-nanometers resolution. In March 2014, LCLS held a workshop to discuss the scientific and technical challenges for reaching the ultimate goal of atomic resolution with single-shot coherent diffractive imaging. This paper summarizes the workshop findings and presents the roadmap toward reaching atomic resolution, 3D imaging at free-electron laser sources.


Structure | 2010

ATP-Induced Conformational Dynamics in the AAA+ Motor Unit of Magnesium Chelatase

Joakim Lundqvist; Hans Elmlund; Ragna Peterson Wulff; Lisa Berglund; Dominika Elmlund; Cecilia Emanuelsson; Hans Hebert; Robert D. Willows; Mats Hansson; Martin Lindahl; Salam Al-Karadaghi

Mg-chelatase catalyzes the first committed step of the chlorophyll biosynthetic pathway, the ATP-dependent insertion of Mg(2+) into protoporphyrin IX (PPIX). Here we report the reconstruction using single-particle cryo-electron microscopy of the complex between subunits BchD and BchI of Rhodobacter capsulatus Mg-chelatase in the presence of ADP, the nonhydrolyzable ATP analog AMPPNP, and ATP at 7.5 A, 14 A, and 13 A resolution, respectively. We show that the two AAA+ modules of the subunits form a unique complex of 3 dimers related by a three-fold axis. The reconstructions demonstrate substantial differences between the conformations of the complex in the presence of ATP and ADP, and suggest that the C-terminal integrin-I domains of the BchD subunits play a central role in transmitting conformational changes of BchI to BchD. Based on these data a model for the function of magnesium chelatase is proposed.


Biochemistry | 2008

Structural basis of the iron storage function of frataxin from single-particle reconstruction of the iron-loaded oligomer.

Ulrika Schagerlöf; Hans Elmlund; Oleksandr Gakh; Gustav Nordlund; Hans Hebert; Martin Lindahl; Grazia Isaya; Salam Al-Karadaghi

The mitochondrial protein frataxin plays a central role in mitochondrial iron homeostasis, and frataxin deficiency is responsible for Friedreich ataxia, a neurodegenerative and cardiac disease that affects 1 in 40000 children. Here we present a single-particle reconstruction from cryoelectron microscopic images of iron-loaded 24-subunit oligomeric frataxin particles at 13 and 17 A resolution. Computer-aided classification of particle images showed heterogeneity in particle size, which was hypothesized to result from gradual accumulation of iron within the core structure. Thus, two reconstructions were created from two classes of particles with iron cores of different sizes. The reconstructions show the iron core of frataxin for the first time. Compared to the previous reconstruction of iron-free particles from negatively stained images, the higher resolution of the present reconstruction allowed a more reliable analysis of the overall three-dimensional structure of the 24-meric assembly. This was done after docking the X-ray structure of the frataxin trimer into the EM reconstruction. The structure revealed a close proximity of the suggested ferroxidation sites of different monomers to the site proposed to serve in iron nucleation and mineralization. The model also assigns a new role to the N-terminal helix of frataxin in controlling the channel at the 4-fold axis of the 24-subunit oligomer. The reconstructions show that, together with some common features, frataxin has several unique features which distinguish it from ferritin. These include the overall organization of the oligomers, the way they are stabilized, and the mechanisms of iron core nucleation.


Nature Communications | 2016

Structure of the poly-C9 component of the complement membrane attack complex

Natalya V Dudkina; Bradley Spicer; Cyril Reboul; Paul J. Conroy; Natalya Lukoyanova; Hans Elmlund; Ruby H. P. Law; Susan M. Ekkel; Stephanie Kondos; Robert J. A. Goode; Georg Ramm; James C. Whisstock; Helen R. Saibil; Michelle Anne Dunstone

The membrane attack complex (MAC)/perforin-like protein complement component 9 (C9) is the major component of the MAC, a multi-protein complex that forms pores in the membrane of target pathogens. In contrast to homologous proteins such as perforin and the cholesterol-dependent cytolysins (CDCs), all of which require the membrane for oligomerisation, C9 assembles directly onto the nascent MAC from solution. However, the molecular mechanism of MAC assembly remains to be understood. Here we present the 8 Å cryo-EM structure of a soluble form of the poly-C9 component of the MAC. These data reveal a 22-fold symmetrical arrangement of C9 molecules that yield an 88-strand pore-forming β-barrel. The N-terminal thrombospondin-1 (TSP1) domain forms an unexpectedly extensive part of the oligomerisation interface, thus likely facilitating solution-based assembly. These TSP1 interactions may also explain how additional C9 subunits can be recruited to the growing MAC subsequent to membrane insertion.


Structure | 2010

Ab Initio Structure Determination from Electron Microscopic Images of Single Molecules Coexisting in Different Functional States

Dominika Elmlund; Ralph E. Davis; Hans Elmlund

We have developed methods for ab initio three-dimensional (3D) structure determination from projection images of randomly oriented single molecules coexisting in multiple functional states, to aid the study of complex samples of macromolecules and nanoparticles by electron microscopy (EM). New algorithms for the determination of relative 3D orientations and conformational state assignment of single-molecule projection images are combined with well-established techniques for alignment and statistical image analysis. We describe how the methodology arrives at homogeneous groups of images aligned in 3D and discuss application to experimental EM data sets of the Escherichia coli ribosome and yeast RNA polymerase II.

Collaboration


Dive into the Hans Elmlund's collaboration.

Top Co-Authors

Avatar

Dominika Elmlund

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar

Hans Hebert

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dominika Elmlund

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge