Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Gmuender is active.

Publication


Featured researches published by Hans Gmuender.


Mutation Research-reviews in Mutation Research | 2008

The carcinoGENOMICS project: Critical selection of model compounds for the development of omics-based in vitro carcinogenicity screening assays

Mathieu Vinken; Tatyana Y. Doktorova; Heidrun Ellinger-Ziegelbauer; Hans-Jürgen Ahr; Edward A. Lock; Paul L. Carmichael; Erwin Ludo Roggen; Joost H.M. van Delft; Jos Kleinjans; José V. Castell; Roque Bort; Teresa Donato; Michael P. Ryan; Raffaella Corvi; Hector C. Keun; Timothy M. D. Ebbels; Toby J. Athersuch; Susanna-Assunta Sansone; Philippe Rocca-Serra; R.H. Stierum; Paul Jennings; Walter Pfaller; Hans Gmuender; Tamara Vanhaecke; Vera Rogiers

Recent changes in the European legislation of chemical-related substances have forced the scientific community to speed up the search for alternative methods that could partly or fully replace animal experimentation. The Sixth Framework Program project carcinoGENOMICS was specifically raised to develop omics-based in vitro screens for testing the carcinogenic potential of chemical compounds in a pan-European context. This paper provides an in-depth analysis of the complexity of choosing suitable reference compounds used for creating and fine-tuning the in vitro carcinogenicity assays. First, a number of solid criteria for the selection of the model compounds are defined. Secondly, the strategy followed, including resources consulted, is described and the selected compounds are briefly illustrated. Finally, limitations and problems encountered during the selection procedure are discussed. Since selecting an appropriate set of chemicals is a frequent impediment in the early stages of similar research projects, the information provided in this paper might be extremely valuable.


Toxicological Sciences | 2011

Human Embryonic Stem Cell Derived Hepatocyte-Like Cells as a Tool for In Vitro Hazard Assessment of Chemical Carcinogenicity

Reha Yildirimman; Gabriella Brolén; Mireia Vilardell; Gustav Eriksson; Jane Synnergren; Hans Gmuender; Atanas Kamburov; Magnus Ingelman-Sundberg; José V. Castell; Agustín Lahoz; Jos Kleinjans; Joost H.M. van Delft; Petter Björquist; Ralf Herwig

Hepatocyte-like cells derived from the differentiation of human embryonic stem cells (hES-Hep) have potential to provide a human relevant in vitro test system in which to evaluate the carcinogenic hazard of chemicals. In this study, we have investigated this potential using a panel of 15 chemicals classified as noncarcinogens, genotoxic carcinogens, and nongenotoxic carcinogens and measured whole-genome transcriptome responses with gene expression microarrays. We applied an ANOVA model that identified 592 genes highly discriminative for the panel of chemicals. Supervised classification with these genes achieved a cross-validation accuracy of > 95%. Moreover, the expression of the response genes in hES-Hep was strongly correlated with that in human primary hepatocytes cultured in vitro. In order to infer mechanistic information on the consequences of chemical exposure in hES-Hep, we developed a computational method that measures the responses of biochemical pathways to the panel of treatments and showed that these responses were discriminative for the three toxicity classes and linked to carcinogenesis through p53, mitogen-activated protein kinases, and apoptosis pathway modules. It could further be shown that the discrimination of toxicity classes was improved when analyzing the microarray data at the pathway level. In summary, our results demonstrate, for the first time, the potential of human embryonic stem cell--derived hepatic cells as an in vitro model for hazard assessment of chemical carcinogenesis, although it should be noted that more compounds are needed to test the robustness of the assay.


International Journal of Hygiene and Environmental Health | 2017

The exposome in practice: Design of the EXPOsOMICS project

Paolo Vineis; Marc Chadeau-Hyam; Hans Gmuender; John Gulliver; Zdenko Herceg; Jos Kleinjans; Manolis Kogevinas; Soterios Α. Kyrtopoulos; Mark J. Nieuwenhuijsen; David H. Phillips; Nicole Probst-Hensch; Augustin Scalbert; Roel Vermeulen; Christopher P. Wild

EXPOsOMICS is a European Union funded project that aims to develop a novel approach to the assessment of exposure to high priority environmental pollutants, by characterizing the external and the internal components of the exposome. It focuses on air and water contaminants during critical periods of life. To this end, the project centres on 1) exposure assessment at the personal and population levels within existing European short and long-term population studies, exploiting available tools and methods which have been developed for personal exposure monitoring (PEM); and 2) multiple “omic” technologies for the analysis of biological samples (internal markers of external exposures). The search for the relationships between external exposures and global profiles of molecular features in the same individuals constitutes a novel advancement towards the development of “next generation exposure assessment” for environmental chemicals and their mixtures. The linkage with disease risks opens the way to what are defined here as ‘exposome-wide association studies’ (EWAS).


Carcinogenesis | 2013

Transcriptomic responses generated by hepatocarcinogens in a battery of liver-based in vitro models

Tatyana Y. Doktorova; Reha Yildirimman; Mathieu Vinken; Mireia Vilardell; Tamara Vanhaecke; Hans Gmuender; Roque Bort; Gabriella Brolén; Gustav Holmgren; Ruoya Li; Christophe Chesne; Joost H.M. van Delft; Jos Kleinjans; José V. Castell; Petter Björquist; Ralf Herwig; Vera Rogiers

As the conventional approach to assess the potential of a chemical to cause cancer in humans still includes the 2-year rodent carcinogenicity bioassay, development of alternative methodologies is needed. In the present study, the transcriptomics responses following exposure to genotoxic (GTX) and non-genotoxic (NGTX) hepatocarcinogens and non-carcinogens (NC) in five liver-based in vitro models, namely conventional and epigenetically stabilized cultures of primary rat hepatocytes, the human hepatoma-derived cell lines HepaRG and HepG2 and human embryonic stem cell-derived hepatocyte-like cells, are examined. For full characterization of the systems, several bioinformatics approaches are employed including gene-based, ConsensusPathDB-based and classification analysis. They provide convincingly similar outcomes, namely that upon exposure to carcinogens, the HepaRG generates a gene classifier (a gene classifier is defined as a selected set of characteristic gene signatures capable of distinguishing GTX, NGTX carcinogens and NC) able to discriminate the GTX carcinogens from the NGTX carcinogens and NC. The other in vitro models also yield cancer-relevant characteristic gene groups for the GTX exposure, but some genes are also deregulated by the NGTX carcinogens and NC. Irrespective of the tested in vitro model, the most uniformly expressed pathways following GTX exposure are the p53 and those that are subsequently induced. The NGTX carcinogens triggered no characteristic cancer-relevant gene profiles in all liver-based in vitro systems. In conclusion, liver-based in vitro models coupled with transcriptomics techniques, especially in the case when the HepaRG cell line is used, represent valuable tools for obtaining insight into the mechanism of action and identification of GTX carcinogens.


Toxicological Sciences | 2012

Toxicogenomic profiles in relation to maternal immunotoxic exposure and immune functionality in newborns.

Kevin Hochstenbach; D.M. van Leeuwen; Hans Gmuender; Ralph W.H. Gottschalk; Solvor B. Stølevik; Unni Cecilie Nygaard; Martinus Løvik; Berit Granum; Ellen Namork; Helle Margrete Meltzer; J.C.S. Kleinjans; J.H.M. van Delft; Henk van Loveren

A crucial period for the development of the immune system occurs in utero. This results in a high fetal vulnerability to immunotoxic exposure, and indeed, immunotoxic effects have been reported, demonstrating negative effects on immune-related health outcomes and immune functionality. Within the NewGeneris cohort BraMat, a subcohort of the Norwegian Mother and Child Cohort Study (MoBa), immunotoxicity was demonstrated for polychlorinated biphenyls and dioxins, showing associations between estimated maternal intake levels and reduced measles vaccination responses in the offspring at the age of 3. The present study aimed to investigate this link at the transcriptomic level within the same BraMat cohort. To this end, whole-genome gene expression in cord blood was investigated and found to be associated with maternal Food Frequency Questionnaires-derived exposure estimates and with vaccination responses in children at 3 years of age. Because the literature reports gender specificity in the innate, humoral, and cell-mediated responses to viral vaccines, separate analysis for males and females was conducted. Separate gene sets for male and female neonates were identified, comprising genes significantly correlating with both 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and polychlorinated biphenyls (PCB) exposure and with measles vaccination response. Noteworthy, genes correlating negatively with exposure in general show positive correlations with antibody levels and vice versa. For both sexes, these included immune-related genes, suggesting immunosuppressive effects of maternal exposure to TCDD and PCB at the transcriptomic level in neonates in relation to measles vaccination response 3 years later.


Cancer Epidemiology, Biomarkers & Prevention | 2012

Global Gene Expression Analysis in Cord Blood Reveals Gender-Specific Differences in Response to Carcinogenic Exposure In Utero

Kevin Hochstenbach; Danitsja M. van Leeuwen; Hans Gmuender; Ralf R.W. Gottschalk; Martinus Løvik; Berit Granum; Unni Cecilie Nygaard; Ellen Namork; Micheline Kirsch-Volders; Ilse Decordier; Kim Vande Loock; Harrie Besselink; Margareta Törnqvist; Hans von Stedingk; Per Rydberg; Jos Kleinjans; Henk van Loveren; Joost H.M. van Delft

Background: It has been suggested that fetal carcinogenic exposure might lead to predisposition to develop cancer during childhood or in later life possibly through modulation of the fetal transcriptome. Because gender effects in the incidence of childhood cancers have been described, we hypothesized differences at the transcriptomic level in cord blood between male and female newborns as a consequence of fetal carcinogenic exposure. The objective was to investigate whether transcriptomic responses to dietary genotoxic and nongenotoxic carcinogens show gender-specific mechanisms-of-action relevant for chemical carcinogenesis. Methods: Global gene expression was applied in umbilical cord blood samples, the CALUX-assay was used for measuring dioxin(-like), androgen(-like), and estrogen(-like) internal exposure, and acrylamide–hemoglobin adduct levels were determined by mass spectrometry adduct-FIRE-procedureTM. To link gene expression to an established phenotypic biomarker of cancer risk, micronuclei frequencies were investigated. Results: While exposure levels did not differ between sexes at birth, important gender-specific differences were observed in gene expressions associated with these exposures linked with cell cycle, the immune system and more general cellular processes such as posttranslation. Moreover, oppositely correlating leukemia/lymphoma genes between male and female newborns were identified in relation to the different biomarkers of exposure that might be relevant to male-specific predisposition to develop these cancers in childhood. Conclusions/Impact: This study reveals different transcriptomic responses to environmental carcinogens between the sexes. In particular, male-specific TNF-alpha-NF-kB signaling upon dioxin exposure and activation of the Wnt-pathway in boys upon acrylamide exposure might represent possible mechanistic explanations for gender specificity in the incidence of childhood leukemia. Cancer Epidemiol Biomarkers Prev; 21(10); 1756–67. ©2012 AACR.


Toxicological Sciences | 2010

Transcriptomic Profile Indicative of Immunotoxic Exposure: In Vitro Studies in Peripheral Blood Mononuclear Cells

Kevin Hochstenbach; Danitsja M. van Leeuwen; Hans Gmuender; Solvor B. Stølevik; Unni Cecilie Nygaard; Martinus Løvik; Berit Granum; Ellen Namork; Joost H.M. van Delft; Henk van Loveren

Investigating the immunotoxic effects of exposure to chemicals usually comprises evaluation of weight and histopathology of lymphoid tissues, various lymphocyte parameters in the circulation, and immune function. Immunotoxicity assessment is time consuming in humans or requires a high number of animals, making it expensive. Furthermore, reducing the use of animals in research is an important ethical and political issue. Immunotoxicogenomics represents a novel approach to investigate immunotoxicity able of overcoming these limitations. The current research, embedded in the European Union project NewGeneris, aimed to retrieve gene expression profiles that are indicative of exposure to immunotoxicants. To this end, whole-genome gene expression was investigated in human peripheral blood mononuclear cells in response to in vitro exposure to a range of immunotoxic chemicals (4-hydroxy-2-nonenal, aflatoxin B1, benzo[a]pyrene, deoxynivalenol, ethanol, malondialdehyde, polychlorinated biphenyl 153, and 2,3,7,8-tetrachlorodibenzo-p-dioxin) and nonimmunotoxic chemicals (acrylamide, dimethylnitrosamine, 2-amino-3-methyl-3H-imidazo[4,5-F]quinoline, and 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine). Using Agilent oligonucleotide microarrays, whole-genome gene expression profiles were generated, which were analyzed using Genedatas Expressionist software. Using Recursive Feature Elimination and Support Vector Machine, a set of 48 genes was identified that distinguishes the immunotoxic from the nonimmunotoxic compounds. Analysis for enrichment of biological processes showed the gene set to be highly biologically and immunologically relevant. We conclude that we have identified a promising transcriptomic profile indicative of immunotoxic exposure.


BMC Bioinformatics | 2008

Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air pollution

Stefano Moretti; Danitsja M. van Leeuwen; Hans Gmuender; Stefano Bonassi; Joost H.M. van Delft; Jos Kleinjans; Fioravante Patrone; Domenico Franco Merlo

BackgroundIn gene expression analysis, statistical tests for differential gene expression provide lists of candidate genes having, individually, a sufficiently low p-value. However, the interpretation of each single p-value within complex systems involving several interacting genes is problematic. In parallel, in the last sixty years, game theory has been applied to political and social problems to assess the power of interacting agents in forcing a decision and, more recently, to represent the relevance of genes in response to certain conditions.ResultsIn this paper we introduce a Bootstrap procedure to test the null hypothesis that each gene has the same relevance between two conditions, where the relevance is represented by the Shapley value of a particular coalitional game defined on a microarray data-set. This method, which is called Comparative Analysis of Shapley value (shortly, CASh), is applied to data concerning the gene expression in children differentially exposed to air pollution. The results provided by CASh are compared with the results from a parametric statistical test for testing differential gene expression. Both lists of genes provided by CASh and t-test are informative enough to discriminate exposed subjects on the basis of their gene expression profiles. While many genes are selected in common by CASh and the parametric test, it turns out that the biological interpretation of the differences between these two selections is more interesting, suggesting a different interpretation of the main biological pathways in gene expression regulation for exposed individuals. A simulation study suggests that CASh offers more power than t-test for the detection of differential gene expression variability.ConclusionCASh is successfully applied to gene expression analysis of a data-set where the joint expression behavior of genes may be critical to characterize the expression response to air pollution. We demonstrate a synergistic effect between coalitional games and statistics that resulted in a selection of genes with a potential impact in the regulation of complex pathways.


American Journal of Physiology-renal Physiology | 2012

Carcinogens induce loss of the primary cilium in human renal proximal tubular epithelial cells independently of effects on the cell cycle

Robert Radford; Craig Slattery; Paul Jennings; Oliver E. Blacque; Walter Pfaller; Hans Gmuender; Joost H.M. van Delft; Michael P. Ryan; Tara McMorrow

The primary cilium is an immotile sensory and signaling organelle found on the majority of mammalian cell types. Of the multitude of roles that the primary cilium performs, perhaps some of the most important include maintenance of differentiation, quiescence, and cellular polarity. Given that the progression of cancer requires disruption of all of these processes, we have investigated the effects of several carcinogens on the primary cilium of the RPTEC/TERT1 human proximal tubular epithelial cell line. Using both scanning electron microscopy and immunofluorescent labeling of the ciliary markers acetylated tubulin and Arl13b, we confirmed that RPTEC/TERT1 cells express primary cilium upon reaching confluence. Treatment with the carcinogens ochratoxin A (OTA) and potassium bromate (KBrO(3)) caused a significant reduction in the number of ciliated cells, while exposure to nifedipine, a noncarcinogenic renal toxin, had no effect on primary cilium expression. Flow cytometric analysis of the effects of all three compounds on the cell cycle revealed that only KBrO(3) resulted in an increase in the proportion of cells entering the cell cycle. Microarray analysis revealed dysregulation of multiple pathways affecting ciliogenesis and ciliary maintenance following OTA and KBrO(3) exposure, which were unaffected by nifedipine exposure. The primary cilium represents a unique physical checkpoint with relevance to carcinogenesis. We have shown that the renal carcinogens OTA and KBrO(3) cause significant deciliation in a model of the proximal tubule. With KBrO(3), this was followed by reentry into the cell cycle; however, deciliation was not found to be associated with reentry into the cell cycle following OTA exposure. Transcriptomic analysis identified dysregulation of Wnt signaling and ciliary trafficking in response to OTA and KBrO(3) exposure.


Toxicology and Applied Pharmacology | 2011

A comparative integrated transcript analysis and functional characterization of differential mechanisms for induction of liver hypertrophy in the rat

Eric Boitier; Alexander Amberg; Valerie Barbié; Arne Blichenberg; Arnd Brandenburg; Hans Gmuender; Albrecht Gruhler; Diane McCarthy; Kirstin Meyer; Bjoern Riefke; Marian Raschke; Willem Schoonen; Maximilian Sieber; Laura Suter; Craig E. Thomas; Nicolas Sajot

The main goal of the present work was to better understand the molecular mechanisms underlying liver hypertrophy (LH), a recurrent finding observed following acute or repeated drug administration to animals, using transcriptomic technologies together with the results from conventional toxicology methods. Administration of 5 terminated proprietary drug candidates from participating companies involved in the EU Innomed PredTox Project or the reference hepatotoxicant troglitazone to rats for up to a 14-day duration induced LH as the main liver phenotypic toxicity outcome. The integrated analysis of transcriptomic liver expression data across studies turned out to be the most informative approach for the generation of mechanistic models of LH. In response to a xenobiotic stimulus, a marked increase in the expression of xenobiotic metabolizing enzymes (XME) was observed in a subset of 4 studies. Accumulation of these newly-synthesized proteins within the smooth endoplasmic reticulum (SER) would suggest proliferation of this organelle, which most likely is the main molecular process underlying the LH observed in XME studies. In another subset of 2 studies (including troglitazone), a marked up-regulation of genes involved in peroxisomal fatty acid β-oxidation was noted, associated with induction of genes involved in peroxisome proliferation. Therefore, an increase in peroxisome abundance would be the main mechanism underlying LH noted in this second study subset. Together, the use of transcript profiling provides a means to generate putative mechanistic models underlying the pathogenesis of liver hypertrophy, to distinguish between subtle variations in subcellular organelle proliferation and creates opportunities for improved mechanism-based risk assessment.

Collaboration


Dive into the Hans Gmuender's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Berit Granum

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Martinus Løvik

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Unni Cecilie Nygaard

Norwegian Institute of Public Health

View shared research outputs
Top Co-Authors

Avatar

Michael P. Ryan

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Paul Jennings

Innsbruck Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge