Hans Henrik M Dahl
Royal Children's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans Henrik M Dahl.
American Journal of Human Genetics | 2005
Rikkert L. Snoeckx; P.L.M. Huygen; Delphine Feldmann; Sandrine Marlin; Françoise Denoyelle; Jaroslaw Waligora; Malgorzata Mueller-Malesinska; Agneszka Pollak; Rafał Płoski; Alessandra Murgia; Eva Orzan; Pierangela Castorina; Umberto Ambrosetti; Ewa Nowakowska-Szyrwinska; Jerzy Bal; Wojciech Wiszniewski; Andreas R. Janecke; Doris Nekahm-Heis; Pavel Seeman; O. Bendová; Margaret A. Kenna; Anna Frangulov; Heidi L. Rehm; Mustafa Tekin; Armagan Incesulu; Hans Henrik M Dahl; Desirée du Sart; Lucy Jenkins; Deirdre Lucas; Maria Bitner-Glindzicz
Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.
American Journal of Human Genetics | 2012
Katherine R. Smith; John A. Damiano; Silvana Franceschetti; Stirling Carpenter; Laura Canafoglia; Michela Morbin; Giacomina Rossi; Davide Pareyson; Sara E. Mole; John F. Staropoli; Katherine B. Sims; Jada Lewis; Wen Lang Lin; Dennis W. Dickson; Hans Henrik M Dahl; Melanie Bahlo; Samuel F. Berkovic
We performed hypothesis-free linkage analysis and exome sequencing in a family with two siblings who had neuronal ceroid lipofuscinosis (NCL). Two linkage peaks with maximum LOD scores of 3.07 and 2.97 were found on chromosomes 7 and 17, respectively. Unexpectedly, we found these siblings to be homozygous for a c.813_816del (p.Thr272Serfs∗10) mutation in the progranulin gene (GRN, granulin precursor) in the latter peak. Heterozygous mutations in GRN are a major cause of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP), the second most common early-onset dementia. Reexamination of progranulin-deficient mice revealed rectilinear profiles typical of NCL. The age-at-onset and neuropathology of FTLD-TDP and NCL are markedly different. Our findings reveal an unanticipated link between a rare and a common neurological disorder and illustrate pleiotropic effects of a mutation in the heterozygous or homozygous states.
Journal of Medical Genetics | 2003
Mg de Silva; Katherine Seymour Elliott; Hans Henrik M Dahl; Elizabeth Fitzpatrick; Stephen A. Wilcox; Martin B. Delatycki; Robert Williamson; Daryl Efron; Michael Lynch; S. Forrest
Background: Attention deficit hyperactivity disorder (ADHD) is a complex condition with high heritability. However, both biochemical investigations and association and linkage studies have failed to define fully the underlying genetic factors associated with ADHD. We have identified a family co-segregating an early onset behavioural/developmental condition, with features of ADHD and intellectual disability, with a pericentric inversion of chromosome 3, 46N inv(3)(p14:q21). Methods: We hypothesised that the inversion breakpoints affect a gene or genes that cause the observed phenotype. Large genomic clones (P1 derived/yeast/bacterial artificial chromosomes) were assembled into contigs across the two inversion breakpoints using molecular and bioinformatic technologies. Restriction fragments crossing the junctions were identified by Southern analysis and these fragments were amplified using inverse PCR. Results: The amplification products were subsequently sequenced to reveal that the breakpoints lay within an intron of the dedicator of cytokinesis 3 (DOCK3) gene at the p arm breakpoint, and an intron of a novel member of the solute carrier family 9 (sodium/hydrogen exchanger) isoform 9 (SLC9A9) at the q arm. Both genes are expressed in the brain, but neither of the genes has previously been implicated in developmental or behavioural disorders. Conclusion: These two disrupted genes are candidates for involvement in the pathway leading to the neuropsychological condition in this family.
Pediatrics | 2006
Melissa Wake; Sherryn Tobin; Barbara Cone-Wesson; Hans Henrik M Dahl; Lynn Gillam; Lisa McCormick; Zeffie Poulakis; Field W. Rickards; Kerryn Saunders; Obioha C. Ukoumunne; Joanne Williams
OBJECTIVE. The goal was to determine the prevalence and effects of slight/mild bilateral sensorineural hearing loss among children in elementary school. METHODS. A cross-sectional, cluster-sample survey of 6581 children (response: 85%; grade 1: n = 3367; grade 5: n = 3214) in 89 schools in Melbourne, Australia, was performed. Slight/mild bilateral sensorineural hearing loss was defined as a low-frequency pure-tone average across 0.5, 1, and 2 kHz and/or a high-frequency pure-tone average across 3, 4, and 6 kHz of 16 to 40 dB hearing level in the better ear, with air/bone-conduction gaps of <10 dB. Parents reported childrens health-related quality of life and behavior. Each child with slight/mild bilateral sensorineural hearing loss, matched to 2 normally hearing children (low-frequency pure-tone average and high-frequency pure-tone average of ≤15 dB hearing level in both ears), completed standardized assessments. Whole-sample comparisons were adjusted for type of school, grade level, and gender, and matched-sample comparisons were adjusted for nonverbal IQ scores. RESULTS. Fifty-five children (0.88%) had slight/mild bilateral sensorineural hearing loss. Children with and without sensorineural hearing loss scored similarly in language (mean: 97.2 vs 99.7), reading (101.1 vs 102.8), behavior (8.4 vs 7.0), and parent- and child-reported child health-related quality of life (77.6 vs 80.0 and 76.1 vs 77.0, respectively), but phonologic short-term memory was poorer (91.0 vs 102.8) in the sensorineural hearing loss group. CONCLUSIONS. The prevalence of slight/mild bilateral sensorineural hearing loss was lower than reported in previous studies. There was no strong evidence that slight/mild bilateral sensorineural hearing loss affects adversely language, reading, behavior, or health-related quality of life in children who are otherwise healthy and of normal intelligence.
Human Molecular Genetics | 2013
Katherine R. Smith; Hans Henrik M Dahl; Laura Canafoglia; Eva Andermann; John A. Damiano; Michela Morbin; A. Bruni; Giorgio Giaccone; Patrick Cossette; Paul Saftig; Joachim Grötzinger; Michael Schwake; Frederick Andermann; John F. Staropoli; Katherine B. Sims; Sara E. Mole; Silvana Franceschetti; Noreen A. Alexander; Jonathan D. Cooper; Harold A. Chapman; Stirling Carpenter; Samuel F. Berkovic; Melanie Bahlo
Kufs disease, an adult-onset neuronal ceroid lipofuscinosis, is challenging to diagnose and genetically heterogeneous. Mutations in CLN6 were recently identified in recessive Kufs disease presenting as progressive myoclonus epilepsy (Type A), whereas the molecular basis of cases presenting with dementia and motor features (Type B) is unknown. We performed genome-wide linkage mapping of two families with recessive Type B Kufs disease and identified a single region on chromosome 11 to which both families showed linkage. Exome sequencing of five samples from the two families identified homozygous and compound heterozygous missense mutations in CTSF within this linkage region. We subsequently sequenced CTSF in 22 unrelated individuals with suspected recessive Kufs disease, and identified an additional patient with compound heterozygous mutations. CTSF encodes cathepsin F, a lysosomal cysteine protease, dysfunction of which is a highly plausible candidate mechanism for a storage disorder like ceroid lipofuscinosis. In silico modeling suggested the missense mutations would alter protein structure and function. Moreover, re-examination of a previously published mouse knockout of Ctsf shows that it recapitulates the light and electron-microscopic pathological features of Kufs disease. Although CTSF mutations account for a minority of cases of type B Kufs, CTSF screening should be considered in cases with early-onset dementia and may avoid the need for invasive biopsies.
Journal of the Neurological Sciences | 2002
Sharon Lewis; Wendy M. Hutchison; Dominic Thyagarajan; Hans Henrik M Dahl
We have analyzed Twinkle, the causative gene for autosomal dominant progressive external ophthalmoplegia (adPEO) on chromosome 10, in 11 Australian autosomal dominant progressive external ophthalmoplegia families of Caucasian origin, and investigated whether there are distinct molecular and clinical features associated with mutations in this gene. We found two new mutations in Twinkle, in 3 of the 11 pedigrees examined. One resides in the linker region of this gene while the other is in the primase domain. Both regions are highly conserved between species. Multiple deletions in the mtDNA from muscle are not always prominent and there are significant variations in the clinical presentation within and between families with mutations in the Twinkle gene. Therefore, genotype/phenotype predictions are difficult. No mutations were found in adenine nucleotide translocator 1 (ANT1), another known adPEO causative gene, in four of the seven remaining families investigated. Thus, Twinkle appears to be the most common gene associated with adPEO in Australian families.
Biochimica et Biophysica Acta | 1992
James Thomas Fitzgerald; Wendy M. Hutchison; Hans Henrik M Dahl
Abstract We have characterized two mouse genes that code for the E1α subunit of pyruvate dehydrogenase (PDH), Phda-1 and Phda-2. The coding regions show a high degree of homology with each other and with the human PDH genes, PDHA1 and PDHA2. Conserved regions include mitochondrial import sequences, phosphorylation sites and a putative TPP binding site. The PDH genes have an analogous chromosomal arrangement to PGK genes in that two isoforms code for a functionally and structurally similar product. Pdha-1 codes for a somatic isoform and maps to the X-chromosome. Pdha-2 is located on an autosome, is intronless and only expressed in spermatogenic cells. Comparison of human and mouse PDH and PGK gene sequences shows that the somatic sequences are more conserved relative to the testis-specific isoforms, and that the mouse PDH E1α genes have experienced a faster rate of DNA change compared to their human counterparts.
Human Molecular Genetics | 2014
Eva M. Reinthaler; Dennis Lal; Sébastien Lebon; Michael S. Hildebrand; Hans Henrik M Dahl; Brigid M. Regan; Martha Feucht; Hannelore Steinböck; Birgit Neophytou; Gabriel M. Ronen; Laurian Roche; Ursula Gruber-Sedlmayr; Julia Geldner; Edda Haberlandt; Per Hoffmann; Stefan Herms; Christian Gieger; Melanie Waldenberger; Andre Franke; Michael Wittig; Susanne Schoch; Albert J. Becker; Andreas Hahn; Katrin Männik; Mohammad R. Toliat; Georg Winterer; Holger Lerche; Peter Nürnberg; Mefford Hc; Ingrid E. Scheffer
Rolandic epilepsy (RE) is the most common idiopathic focal childhood epilepsy. Its molecular basis is largely unknown and a complex genetic etiology is assumed in the majority of affected individuals. The present study tested whether six large recurrent copy number variants at 1q21, 15q11.2, 15q13.3, 16p11.2, 16p13.11 and 22q11.2 previously associated with neurodevelopmental disorders also increase risk of RE. Our association analyses revealed a significant excess of the 600 kb genomic duplication at the 16p11.2 locus (chr16: 29.5-30.1 Mb) in 393 unrelated patients with typical (n = 339) and atypical (ARE; n = 54) RE compared with the prevalence in 65,046 European population controls (5/393 cases versus 32/65,046 controls; Fishers exact test P = 2.83 × 10(-6), odds ratio = 26.2, 95% confidence interval: 7.9-68.2). In contrast, the 16p11.2 duplication was not detected in 1738 European epilepsy patients with either temporal lobe epilepsy (n = 330) and genetic generalized epilepsies (n = 1408), suggesting a selective enrichment of the 16p11.2 duplication in idiopathic focal childhood epilepsies (Fishers exact test P = 2.1 × 10(-4)). In a subsequent screen among children carrying the 16p11.2 600 kb rearrangement we identified three patients with RE-spectrum epilepsies in 117 duplication carriers (2.6%) but none in 202 carriers of the reciprocal deletion. Our results suggest that the 16p11.2 duplication represents a significant genetic risk factor for typical and atypical RE.
Genomics | 1993
Jamie Fitzgerald; Stephen A. Wilcox; Jennifer A. Marshall Graves; Hans Henrik M Dahl
We report the cloning and mapping of a gene (PDHA) for the pyruvate dehydrogenase E1 alpha subunit in marsupials. In situ hybridization and Southern blot analysis show that PDHA is autosomal in marsupials, mapping to chromosome 3q in Sminthopsis macroura and 5p in Macropus eugenii. Since these locations represent a region that was translocated to the p arm of the human X chromosome following marsupial/eutherian divergence, we suggest that the marsupial PDHA gene is homologous to PDHA1, the somatic eutherian isoform located on human Xp and mouse X. Only one copy of PDHA is found in marsupials, whereas a second, testis-specific, intronless form is observed in eutherian mammals. We also suggest that translocation of PDHA to the eutherian X chromosome, which is inactivated during spermatogenesis, led to the evolution of a second testis-specific locus by retroposition to an autosome.
Hearing Research | 2005
Michael S. Hildebrand; Michelle G. de Silva; Tuomas Klockars; C. Arturo Solares; Keiko Hirose; Jonathan D. Smith; Shutish C. Patel; Hans Henrik M Dahl
The cochlear portion of the inner ear converts movements produced by sound waves into electrical impulses. Transcripts enriched in the cochlea are likely to have an important role in hearing. In this paper, we report that microarray analyses of the Soares NMIE inner ear library revealed cochlear enriched expression of apolipoprotein D (apoD), a glycoprotein and member of the lipocalin family that transport small hydrophobic ligands. The cochlear enriched expression of Apod was validated by quantitative real time PCR analysis. To investigate the function of apoD in the inner ear the transcript and protein were localised in the cochlea. Apod messenger RNA (mRNA) expression was localised to the spiral ligament and spiral limbus, particularly in the suprastrial and supralimbral regions. The apoD protein was detected in the spiral ligament, spiral limbus and also in the outer hair cells of the organ of Corti. Investigation of cell lines exhibiting characteristics of hair and supporting cells revealed no Apod mRNA expression in these cells. This suggests transport of the protein within the cochlea, followed by internalisation into outer hair cells. The spiral limbus and ligament contain subpopulations of fibrocytes that are intimately involved in regulation of ion balance in the cochlear fluids and type I, II and III fibrocytes of the spiral ligament were all shown to be positive for apoD protein. On the basis of these results it was hypothesised that apoD could be involved in maintaining cochlear fluid homeostasis. To determine whether the apoD gene product was important for normal auditory function the hearing ability of an apoD knockout mouse was tested. The mouse was found to have a hearing threshold that was not significantly different to the control strain.