Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Joachim Schmid is active.

Publication


Featured researches published by Hans Joachim Schmid.


Numerische Mathematik | 1978

On cubature formulae with a minimal number of knots

Hans Joachim Schmid

SummaryIn this paper an approach is outlined to the two-dimensional analogon of the Gaussian quadrature problem. The main results are necessary and sufficient conditions for the existence of cubature formulae which are exact for all polynomials of degree ≦m and which have a minimal number of 1/2k(k+1) knots,k=[m/2]+1. Ifm is odd, similar results are due to I.P. Mysovskikh ([5, 6]) which will be derived in a new way as a special case of the general characterization given here. Furthermore, it will be shown how this characterization can be used to construct minimal formulae of even degree.


Journal of Computational and Applied Mathematics | 2001

Cubature formulae and orthogonal polynomials

Ronald Cools; I. P. Mysovskikh; Hans Joachim Schmid

Abstract The connection between orthogonal polynomials and cubature formulae for the approximation of multivariate integrals has been studied for about 100 yr. The article J. Radon published about 50 yr ago (J. Radon, Zur mechanischen Kubatur, Monatsh. Math. 52 (1948) 286–300) has been very influential. In this text we describe some of the results that were obtained during the search for answers to questions raised by his article.


Numerical Integration IV | 1993

A new lower bound for the number of nodes in cubature formulae of degree 4 n + 1 for some circularly symmetric integrals

Ronald Cools; Hans Joachim Schmid

For two classes of integrals it will be shown that the number of nodes of cubature formulae of degree 4n + 1, n > 1, will not attain Moller’s lower bound. Thus in these cases that bound has to be increased by 1.


Computing | 1989

Minimal cubature formulae of degree 2k−1 for two classical functionals

Ronald Cools; Hans Joachim Schmid

Cubature formulae with the number of nodes equal to Möllers lower bound are rare. In this paper, the relation between real polynomial ideals and cubature formulae is used to construct such minimal formulae of arbitrary odd degree for two classical integrals. We found general expressions for bases of these ideals and closed formulae for almost all nodes. We proved that all nodes are inside the domain of integration.ZusammenfassungEs sind nur wenige Kubaturformeln bekannt, deren Knotenzahl Möllers unterer Schranke entspricht. In dieser Arbeit werden die Beziehungen zwischen reelen Idealen und Kubaturformeln ausgenutzt, um solche minimale Formeln mit beliebigem ungeraden Grad für zwei klassische Integrale zu bestimmen. Eine Basis der Ideale kann explizit angegeben werden, weiter können fast alle Knoten in geschlossener Form bestimmt werden. Es wird gezeigt, daß alle Knoten im Integrationsbereicht liegen.


Journal of Complexity | 2003

On the (non)-existence of some cubature formulas: gaps between a theory and its applications

Ronald Cools; Hans Joachim Schmid

An overview of the lower bounds for the number of points for integrals over the square and triangle is presented. This is compared with the number of points in known cubature formulae.


Journal of Computational and Applied Mathematics | 1999

An interactive tool to visualize common zeros of two-dimensional polynomials

Bernhard Griener; Hans Joachim Schmid

In this note an interactive program is presented which allows the visualization of the common roots of two-dimensional polynomials. The program is useful when constructing cubature formulas by use of orthogonal polynomials.


Computing | 1996

Minimal cubature formulae of degree 3 for integrals over the surface of the torus

M. V. Noskov; Hans Joachim Schmid

In this note a minimal cubature formula of degree 3 will be determined for integrals over the surface of the torus with arbitrary radii. The construction is based on a normalization of the problem, ideal theory, and computer algebra.ZusammenfassungIn dieser Note wird eine minimale Kubaturformel vom Grad 3 für Integrale über der Torusfläche mit beliebigen Radien bestimmt. Die Konstruktion stützt sich auf eine Normalisierung des Problems, idealtheoretische Ansätze und auf den Einsatz von Computer Algebra.


Mathematische Zeitschrift | 1974

Eine geometrische Deutung der Ungarischen Methode

Hans Joachim Schmid

In diesem Artikel werden Ergebnisse einer Untersuchung des geometrischen Vorgehens der Ungarischen Methode zusammengefaBt. Das Hauptresultat besteht in folgender Deutung: Die Ungarische Methode bewegt sich mit jedem Schritt in Richtung des steilsten Abstiegs aller m6glichen, auf 1 normierten Fortschreitungsrichtungen bis zum Rand des zul~issigen Bereichs. Darin erweist sich die Ungarische Methode dem Simplexverfahren iiberlegen, das sich nur in Richtung der steilsten aller auf 1 normierten Kantenrichtungen bewegen kann.


Computing | 1989

Minimal cubature formulae of degree 2k−1 for two classical functionals@@@Minimale Kubaturformeln von Grad 2k−1 für zwei klassische Funktionale

Ronald Cools; Hans Joachim Schmid

Cubature formulae with the number of nodes equal to Möllers lower bound are rare. In this paper, the relation between real polynomial ideals and cubature formulae is used to construct such minimal formulae of arbitrary odd degree for two classical integrals. We found general expressions for bases of these ideals and closed formulae for almost all nodes. We proved that all nodes are inside the domain of integration.ZusammenfassungEs sind nur wenige Kubaturformeln bekannt, deren Knotenzahl Möllers unterer Schranke entspricht. In dieser Arbeit werden die Beziehungen zwischen reelen Idealen und Kubaturformeln ausgenutzt, um solche minimale Formeln mit beliebigem ungeraden Grad für zwei klassische Integrale zu bestimmen. Eine Basis der Ideale kann explizit angegeben werden, weiter können fast alle Knoten in geschlossener Form bestimmt werden. Es wird gezeigt, daß alle Knoten im Integrationsbereicht liegen.


Mathematische Zeitschrift | 1980

Interpolatorische Kubaturformeln und reelle Ideale

Hans Joachim Schmid

Collaboration


Dive into the Hans Joachim Schmid's collaboration.

Top Co-Authors

Avatar

Ronald Cools

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

Bernhard Griener

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

I. P. Mysovskikh

Saint Petersburg State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge