Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans-Jørgen Albrechtsen is active.

Publication


Featured researches published by Hans-Jørgen Albrechtsen.


Journal of Contaminant Hydrology | 2000

Characterization of redox conditions in groundwater contaminant plumes.

Thomas Højlund Christensen; Poul Løgstrup Bjerg; Steven A. Banwart; Rasmus Jakobsen; Gorm Heron; Hans-Jørgen Albrechtsen

Evaluation of redox conditions in groundwater pollution plumes is often a prerequisite for understanding the behaviour of the pollutants in the plume and for selecting remediation approaches. Measuring of redox conditions in pollution plumes is, however, a fairly recent issue and yet relative few cases have been reported. No standardised or generally accepted approach exists. Slow electrode kinetics and the common lack of internal equilibrium of redox processes in pollution plumes make, with a few exceptions, direct electrochemical measurement and rigorous interpretation of redox potentials dubious, if not erroneous. Several other approaches have been used in addressing redox conditions in pollution plumes: redox-sensitive compounds in groundwater samples, hydrogen concentrations in groundwater, concentrations of volatile fatty acids in groundwater, sediment characteristics and microbial tools, such as MPN counts, PLFA biomarkers and redox bioassays. This paper reviews the principles behind the different approaches, summarizes methods used and evaluates the approaches based on the experience from the reported applications.


Critical Reviews in Environmental Science and Technology | 1994

Attenuation of landfill leachate pollutants in aquifers

Thomas Højlund Christensen; Peter Kjeldsen; Hans-Jørgen Albrechtsen; Gorm Heron; Per Henning Nielsen; Poul Løgstrup Bjerg; Peter Engelund Holm

Abstract Landfill leachate contains a variety of pollutants that may potentially contaminate the ground water and affect the quality of surface waters and well waters. The literature has been critically reviewed in order to assess the attenuation processes governing the contaminants in leachate‐affected aquifers. After an introductory section on leachate composition, the physical and chemical frameworks for the attenuation processes are discussed in terms of dilution/dispersion and redox zones in the plume, respectively. A separate section focuses on the microbiology in terms of the occurrence of bacteria in plumes, the fate of pathogens, and microbial mediation of redox processes. In individual sections, the attenuation of dissolved organic matter, anthropogenic‐specific organic compounds, inorganic macrocomponents as anions and cations, and heavy metals are discussed. The focus is on laboratory experiences and field investigations. The review shows that most leachate contamination plumes are relatively ...


Applied and Environmental Microbiology | 2003

Long-Term Succession of Structure and Diversity of a Biofilm Formed in a Model Drinking Water Distribution System

Adam C. Martiny; Thomas Martini Jørgensen; Hans-Jørgen Albrechtsen; Erik Arvin; Søren Molin

ABSTRACT In this study, we examined the long-term development of the overall structural morphology and community composition of a biofilm formed in a model drinking water distribution system with biofilms from 1 day to 3 years old. Visualization and subsequent quantification showed how the biofilm developed from an initial attachment of single cells through the formation of independent microcolonies reaching 30 μm in thickness to a final looser structure with an average thickness of 14.1 μm and covering 76% of the surface. An analysis of the community composition by use of terminal restriction fragment length polymorphisms showed a correlation between the population profile and the age of the sample, separating the samples into young (1 to 94 days) and old (571 to 1,093 days) biofilms, whereas a limited spatial variation in the biofilm was observed. A more detailed analysis with cloning and sequencing of 16S rRNA fragments illustrated how a wide variety of cells recruited from the bulk water initially attached and resulted in a species richness comparable to that in the water phase. This step was followed by the growth of a bacterium which was related to Nitrospira, which constituted 78% of the community by day 256, and which resulted in a reduction in the overall richness. After 500 days, the biofilm entered a stable population state, which was characterized by a greater richness of bacteria, including Nitrospira, Planctomyces, Acidobacterium, and Pseudomonas. The combination of different techniques illustrated the successional formation of a biofilm during a 3-year period in this model drinking water distribution system.


Applied and Environmental Microbiology | 2005

Identification of Bacteria in Biofilm and Bulk Water Samples from a Nonchlorinated Model Drinking Water Distribution System: Detection of a Large Nitrite-Oxidizing Population Associated with Nitrospira spp.

Adam C. Martiny; Hans-Jørgen Albrechtsen; Erik Arvin; Søren Molin

ABSTRACT In a model drinking water distribution system characterized by a low assimilable organic carbon content (<10 μg/liter) and no disinfection, the bacterial community was identified by a phylogenetic analysis of rRNA genes amplified from directly extracted DNA and colonies formed on R2A plates. Biofilms of defined periods of age (14 days to 3 years) and bulk water samples were investigated. Culturable bacteria were associated with Proteobacteria and Bacteriodetes, whereas independently of cultivation, bacteria from 12 phyla were detected in this system. These included Acidobacteria, Nitrospirae, Planctomycetes, and Verrucomicrobia, some of which have never been identified in drinking water previously. A cluster analysis of the population profiles from the individual samples divided biofilms and bulk water samples into separate clusters (P = 0.027). Bacteria associated with Nitrospira moscoviensis were found in all samples and encompassed 39% of the sequenced clones in the bulk water and 25% of the biofilm community. The close association with Nitrospira suggested that a large part of the population had an autotrophic metabolism using nitrite as an electron donor. To test this hypothesis, nitrite was added to biofilm and bulk water samples, and the utilization was monitored during 15 days. A first-order decrease in nitrite concentration was observed for all samples with a rate corresponding to 0.5 × 105 to 2 × 105 nitrifying cells/ml in the bulk water and 3 × 105 cells/cm2 on the pipe surface. The finding of an abundant nitrite-oxidizing microbial population suggests that nitrite is an important substrate in this system, potentially as a result of the low assimilable organic carbon concentration. This finding implies that microbial communities in water distribution systems may control against elevated nitrite concentrations but also contain large indigenous populations that are capable of assisting the depletion of disinfection agents like chloramines.


Microbial Ecology | 1999

Distribution and Composition of Microbial Populations in a Landfill Leachate Contaminated Aquifer (Grindsted, Denmark).

Liselotte Ludvigsen; Hans-Jørgen Albrechtsen; D.B. Ringelberg; Flemming Ekelund; Thomas Højlund Christensen

A bstractTo investigate whether landfill leachates affected the microbial biomass and/or community composition of the extant microbiota, 37 samples were collected along a 305-m transect of a shallow landfill-leachate polluted aquifer. The samples were analyzed for total numbers of bacteria by use of the acridine orange direct count method (AODC). Numbers of dominant, specific groups of bacteria and total numbers of protozoa were measured by use of the most probable number method (MPN). Viable biomass estimates were obtained from measures of ATP and ester-linked phospholipid fatty acid (PLFA) concentrations. The estimated numbers of total bacteria by direct counts were relatively constant throughout the aquifer, ranging from a low of 4.8 × 106 cells/g dry weight (dw) to a high of 5.3 × 107 cells/g dw. Viable biomass estimates based on PLFA concentrations were one to three orders of magnitude lower with the greatest concentrations (up to 4 × 105 cells/g dw) occurring at the border of the landfill and in samples collected from thin lenses of clay and silt with sand streaks. Cell number estimates based on ATP concentrations were also found to be lower than the direct count measurements (<2.2 × 106 cells/g dw), and with the greatest concentrations close to the landfill. Methanogens (Archaea) and reducers of sulfate, iron, manganese, and nitrate were all observed in the aquifer. Methanogens were found to be restricted to the most polluted and reduced part of the aquifer at a maximum cell number of 5.4 × 104 cells/g dw. Populations of sulfate reducers decreased with an increase in horizontal distance from the landfill ranging from a high of 9.0 × 103 cells/g dw to a low of 6 cells/g dw. Iron, manganese, and nitrate reducers were detected throughout the leachate plume all at maximum cell numbers of 106 cells/g dw. Changes in PLFA profiles indicated that a shift in microbial community composition occurred with increasing horizontal distance from the landfill. The types and patterns of lipid biomarkers suggested that increased proportions of sulfate- and iron-reducing bacteria as well as certain microeukaryotes existed at the border of the landfill. The presence of these lipid biomarkers correlated with the MPN results. There was, however, no significant correlation between the abundances of the specific PLFA biomarkers and quantitative measurements of redox processes. The application of AODC, MPN, PLFA, and ATP analyses in the characterization of the extant microbiota within the Grindsted aquifer revealed that as distance increased from the leachate source, viable biomass decreased and community composition shifted. These results led to the conclusion that the landfill leachate induced an increase in microbial cell numbers by altering the subsurface aquifer so that it was conducive to the growth of methanogens and of iron-and sulfate-reducing bacteria and fungi.


Water Research | 2002

Bulk water phase and biofilm growth in drinking water at low nutrient conditions.

Rasmus Boe-Hansen; Hans-Jørgen Albrechtsen; Erik Arvin; Claus Jørgensen

In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 13 degrees C, for at least 385 days to allow the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day(-1). The bulk water phase bacteria exhibited a higher activity than the biofilm bacteria in terms of culturability, cell-specific ATP content, and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilm exhibited a bacterial growth rate of 0.30 day(-1). The biofilm was radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilm detachment rate of 0.013 day(-1) was determined by measuring the release of 14C-labelled bacteria of the biofilm. For the quasi-stationary phase biofilm, the detachment rate was equivalent to the net growth rate. The growth rates determined in this study by different independent experimental approaches were comparable and within the range of values reported in the literature.


Journal of Contaminant Hydrology | 1998

Anaerobic microbial redox processes in a landfill leachate contaminated aquifer (Grindsted, Denmark)

Liselotte Ludvigsen; Hans-Jørgen Albrechtsen; Gorm Heron; Poul Løgstrup Bjerg; Thomas Højlund Christensen

The distribution of anaerobic microbial redox processes was investigated along a 305 m long transect of a shallow landfill-leachate polluted aquifer. By unamended bioassays containing sediment and groundwater, 37 samples were investigated with respect to methane production, sulfate, iron, and manganese reduction, and denitrification. Methane production was restricted to the most reduced part of the plume with rates of 0.003–0.055 nmol CH4/g dry weight/day. Sulfate reduction was observed at rates of maximum 1.8 nmol SO42−/g dry weight/day along with methane production in the plume, but sulfate reduction was also observed further downgradient of the landfill. Iron reduction at rates of 5–19 nmol Fe(II)/g dry weight/day was observed in only a few samples, but this may be related to a high detection limit for the iron reducing bioassay. Manganese reduction at rates of maximum 2.4 nmol Mn(II)/g dry weight/day and denitrification at rates of 0.2–37 nmol N2O–N/g dry weight/day were observed in the less reduced part of the plume. All the redox processes were microbial processes. In many cases, several redox processes took place simultaneously, but in all samples one process dominated accounting for more than 70% of the equivalent carbon conversion. The bioassays showed that the redox zones in the plume identified from the groundwater composition (e.g. as methanogenic and sulfate reducing) locally hosted also other redox processes (e.g. iron reduction). This may have implications for the potential of the redox zone to degrade trace amounts of organic chemicals and suggests that unamended bioassays may be an important supplement to other approaches in characterizing the redox processes in an anaerobic plume.


Chemosphere | 2000

Fate of seven pesticides in an aerobic aquifer studied in column experiments.

Nina Tuxen; Peter Lysholm Tuchsen; Kirsten Rügge; Hans-Jørgen Albrechtsen; Poul Løgstrup Bjerg

The fate of selected pesticides (bentazone, isoproturon, DNOC, MCPP, dichlorprop and 2,4-D) and a metabolite (2,6-dichlorobenzamide (BAM)) was investigated under aerobic conditions in column experiments using aquifer material and low concentrations of pesticides (approximately 25 microg/l). A solute transport model accounting for kinetic sorption and degradation was used to estimate sorption and degradation parameters. Isoproturon and DNOC were significantly retarded by sorption, whereas the retardation of the phenoxy acids (MCPP, 2,4-D and dichlorprop), BAM and bentazone was very low. After lag periods of 16-33 days for the phenoxy acids and 80 days for DNOC, these pesticides were degraded quickly with 0.-order rate constants of 1.3-2.6 microg/l/day. None of the most probable degradation products were detected.


Environmental Science & Technology | 2015

Biodegradation: Updating the Concepts of Control for Microbial Cleanup in Contaminated Aquifers

Rainer U. Meckenstock; Martin Elsner; Christian Griebler; Tillmann Lueders; Christine Stumpp; Jens Aamand; Spiros N. Agathos; Hans-Jørgen Albrechtsen; Leen Bastiaens; Poul Løgstrup Bjerg; Nico Boon; Winnie Dejonghe; Wei E. Huang; Susanne I. Schmidt; Erik Smolders; Sebastian R. Sørensen; Dirk Springael; Boris M. van Breukelen

Biodegradation is one of the most favored and sustainable means of removing organic pollutants from contaminated aquifers but the major steering factors are still surprisingly poorly understood. Growing evidence questions some of the established concepts for control of biodegradation. Here, we critically discuss classical concepts such as the thermodynamic redox zonation, or the use of steady state transport scenarios for assessing biodegradation rates. Furthermore, we discuss if the absence of specific degrader populations can explain poor biodegradation. We propose updated perspectives on the controls of biodegradation in contaminant plumes. These include the plume fringe concept, transport limitations, and transient conditions as currently underestimated processes affecting biodegradation.


Journal of Environmental Management | 2011

Increasing urban water self-sufficiency: New era, new challenges

Martin Rygaard; Philip John Binning; Hans-Jørgen Albrechtsen

Urban water supplies are traditionally based on limited freshwater resources located outside the cities. However, a range of concepts and techniques to exploit alternative water resources has gained ground as water demands begin to exceed the freshwater available to cities. Based on 113 cases and 15 in-depth case studies, solutions used to increase water self-sufficiency in urban areas are analyzed. The main drivers for increased self-sufficiency were identified to be direct and indirect lack of water, constrained infrastructure, high quality water demands and commercial and institutional pressures. Case studies demonstrate increases in self-sufficiency ratios to as much as 80% with contributions from recycled water, seawater desalination and rainwater collection. The introduction of alternative water resources raises several challenges: energy requirements vary by more than a factor of ten amongst the alternative techniques, wastewater reclamation can lead to the appearance of trace contaminants in drinking water, and changes to the drinking water system can meet tough resistance from the public. Public water-supply managers aim to achieve a high level of reliability and stability. We conclude that despite the challenges, self-sufficiency concepts in combination with conventional water resources are already helping to reach this goal.

Collaboration


Dive into the Hans-Jørgen Albrechtsen's collaboration.

Top Co-Authors

Avatar

Poul Løgstrup Bjerg

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Erik Arvin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Barth F. Smets

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Rasmus Boe-Hansen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Charlotte B. Corfitzen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Rygaard

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Philip John Binning

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karolina Tatari

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge