Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans-Juergen Schulten is active.

Publication


Featured researches published by Hans-Juergen Schulten.


BMC Genomics | 2015

Comparison of microarray expression profiles between follicular variant of papillary thyroid carcinomas and follicular adenomas of the thyroid

Hans-Juergen Schulten; Zuhoor Al-Mansouri; Ibtisam Baghallab; Nadia Bagatian; Ohoud Subhi; Sajjad Karim; Hosam Al-Aradati; Abdulmonem Al-Mutawa; Adel Johary; Abdulrahman A. Meccawy; Khalid A. Al-Ghamdi; Osman Abdel Al-Hamour; Mohammad H. Al-Qahtani; Jaudah Al-Maghrabi

BackgroundFollicular variant of papillary thyroid carcinoma (FVPTC) and follicular adenoma (FA) are histologically closely related tumors and differential diagnosis remains challenging. RNA expression profiling is an established method to unravel molecular mechanisms underlying the histopathology of diseases.MethodsBRAF mutational status was established by direct sequencing the hotspot region of exon 15 in six FVPTCs and seven FAs. Whole-transcript arrays were employed to generate expression profiles in six FVPTCs, seven FAs and seven normal thyroid tissue samples. The threshold of significance for differential expression on the gene and exon level was a p-value with a false discovery rate (FDR) < 0.05 and a fold change cutoff > 2. Two dimensional average linkage hierarchical clustering was generated using differentially expressed genes. Network, pathway, and alternative splicing utilities were employed to interpret significance of expression data on the gene and exon level.ResultsExpression profiling in FVPTCs and FAs, all of which were negative for a BRAF mutation, revealed 55 transcripts that were significantly differentially expressed, 40 of which were upregulated and 15 downregulated in FVPTCs vs. FAs. Amongst the most significantly upregulated genes in FVPTCs were GABA B receptor, 2 (GABBR2), neuronal cell adhesion molecule (NRCAM), extracellular matrix protein 1 (ECM1), heparan sulfate 6-O-sulfotransferase 2 (HS6ST2), and retinoid X receptor, gamma (RXRG). The most significantly downregulated genes in FVPTCs included interaction protein for cytohesin exchange factors 1 (IPCEF1), G protein-coupled receptor 155 (GPR155), Purkinje cell protein 4 (PCP4), chondroitin sulfate N-acetylgalactosaminyltransferase 1 (CSGALNACT1), and glutamate receptor interacting protein 1 (GRIP1). Alternative splicing analysis detected 87 genes, 52 of which were also included in the list of 55 differentially expressed genes. Network analysis demonstrated multiple interactions for a number of differentially expressed molecules including vitamin D (1,25- dihydroxyvitamin D3) receptor (VDR), SMAD family member 9 (SMAD9), v-kit Hardy-Zuckerman 4 feline sarcoma viral oncogene homolog (KIT), and RXRG.ConclusionsThis is one of the first studies using whole-transcript expression arrays to compare expression profiles between FVPTCs and FAs. A set of differentially expressed genes has been identified that contains valuable candidate genes to differentiate both histopathologically related tumor types on the molecular level.


BMC Medical Genomics | 2015

Individualized medicine enabled by genomics in Saudi Arabia

Muhammad Abu-Elmagd; Mourad Assidi; Hans-Juergen Schulten; Ashraf Dallol; Peter Natesan Pushparaj; Farid Ahmed; Stephen W. Scherer; Mohammed H. Al-Qahtani

The biomedical research sector in Saudi Arabia has recently received special attention from the government, which is currently supporting research aimed at improving the understanding and treatment of common diseases afflicting Saudi Arabian society. To build capacity for research and training, a number of centres of excellence were established in different areas of the country. Among these, is the Centre of Excellence in Genomic Medicine Research (CEGMR) at King Abdulaziz University, Jeddah, with its internationally ranked and highly productive team performing translational research in the area of individualized medicine. Here, we present a panorama of the recent trends in different areas of biomedical research in Saudi Arabia drawing from our vision of where genomics will have maximal impact in the Kingdom of Saudi Arabia. We describe advances in a number of research areas including; congenital malformations, infertility, consanguinity and pre-implantation genetic diagnosis, cancer and genomic classifications in Saudi Arabia, epigenetic explanations of idiopathic disease, and pharmacogenomics and personalized medicine. We conclude that CEGMR will continue to play a pivotal role in advances in the field of genomics and research in this area is facing a number of challenges including generating high quality control data from Saudi population and policies for using these data need to comply with the international set up.


Hereditary Cancer in Clinical Practice | 2012

BRAF mutations in thyroid tumors from an ethnically diverse group

Hans-Juergen Schulten; Sherine Salama; Zuhoor Al-Mansouri; Reem Alotibi; Khalid A. Al-Ghamdi; Osman Abdel Al-Hamour; Hassan Sayadi; Hosam Al-Aradati; Adel Al-Johari; Etimad Huwait; Mamdooh Gari; Mohammed H. Al-Qahtani; Jaudah Al-Maghrabi

BackgroundThe molecular etiology of thyroid carcinoma (TC) and other thyroid diseases which may present malignant precursor lesions is not fully explored yet. The purpose of this study was to estimate frequency, type and clinicopathological value of BRAF exon 15 mutations in different types of cancerous and non-cancerous thyroid lesions originating in an ethnically diverse population.MethodsBRAF exon 15 was sequenced in 381 cases of thyroid lesions including Hashimoto´s thyroiditis, nodular goiters, hyperplastic nodules, follicular adenomas (FA), papillary TC (PTC), follicular variant PTC (FVPTC), microcarcinomas of PTC (micro PTC; tumor size ≤ 1 cm), follicular TC (FTC), and non-well differentiated TC (non-WDTC).ResultsWe identified BRAF mutations in one of 69 FA, 72 of 115 (63%) PTC, seven of 42 (17%) FVPTC, 10 of 56 (18%) micro PTC, one of 17 (6%) FTC, and one of eight (13%) non-WDTC. Most of the cases showed the common V600E mutation. One case each of PTC, FVPTC, and FTC harbored a K601E mutation. A novel BRAF mutation was identified in a FA leading to deletion of threonine at codon 599 (p.T599del). A rare 3-base pair insertion was detected in a stage III PTC resulting in duplication of threonine at codon 599 (p.T599dup). Patients with PTC harboring no BRAF mutation (BRAFwt) were on average younger than those with a BRAF mutation (BRAFmut) in the PTC (36.6 years vs. 43.8 years). Older age (≥ 45 years) in patients with PTC was significantly associated with tumor size ≥ 4 cm (P = 0.018), vessel invasion (P = 0.004), and distant metastasis (P = 0.001). Lymph node (LN) involvement in PTC significantly correlated with tumor size (P = 0.044), and vessel invasion (P = 0.013). Of notice, taken the whole TC group, family history of thyroid disease positively correlated with capsular invasion (P = 0.025).ConclusionsOlder age is manifold associated with unfavorable tumor markers in our series. The K601E identified in a PTC, FVPTC, and FTC seems to be more distributed among different histological types of TC than previously thought. The T599del is a yet undescribed mutation and the rare T599dup has not been reported as a mutation in PTC so far.


Cancer Epidemiology, Biomarkers & Prevention | 2012

Methylation of the Polycomb Group Target Genes Is a Possible Biomarker for Favorable Prognosis in Colorectal Cancer

Ashraf Dallol; Jaudah Al-Maghrabi; Abdelbaset Buhmeida; Mamdooh Gari; Adeel Chaudhary; Hans-Juergen Schulten; Adel M. Abuzenadah; Mahmoud Al-Ahwal; Abdulrahman Sibiany; Mohammed H. Al-Qahtani

Background: Colorectal cancer (CRC) is the second most common cancer in the Kingdom of Saudi Arabia with ever increasing incidence rates. DNA methylation is a common event in CRC where it is now considered an important phenomenon in CRC carcinogenesis and useful for the classification and prognosis of CRC. Methods: To gain insight into the molecular mechanisms underpinning CRC in Saudi Arabian patients, we profiled the DNA methylation frequency of key genes (MLH1, MSH2, RASSF1A, SLIT2, HIC1, MGMT, SFRP1, MYOD1, APC, CDKN2A, as well as five CIMP markers) in 120 sporadic CRC cases. CRC tumors originating from the rectum, left, and right colons are represented in this cohort of formalin-fixed paraffin-embedded tissues. Results: The most common methylation frequency was detected in the polycomb group target genes (PCGT) including SFRP1 (70%), MYOD1 (60.8%), HIC1 (61.7%), and SLIT2 (56.7%). In addition, MGMT methylation was detected at a high frequency (68.3%). RASSF1A, APC, and CDKN2A methylation frequencies were 42.5%, 25%, and 32.8%, respectively. K-means clustering analysis of the methylation events results in the clustering of the CRC samples into three groups depending on the level of methylation detected. Conclusion: Group II (PCGT methylation and CIMP-negative) methylation signature carried a favorable prognosis for male patients, whereas older patients with group I rare methylation signature have a potentially poorer clinical outcome. Impact: Methylation of the PCGT genes along with RASSF1A, APC, and MGMT can be potentially used as a new biomarker for the classification and prognosis of CRC tumors and independently of where the tumor has originated. Cancer Epidemiol Biomarkers Prev; 21(11); 2069–75. ©2012 AACR.


BMC Genomics | 2015

Transcriptomics profiling study of breast cancer from Kingdom of Saudi Arabia revealed altered expression of Adiponectin and Fatty Acid Binding Protein4 : Is lipid metabolism associated with breast cancer?

Adnan Merdad; Sajjad Karim; Hans-Juergen Schulten; Manikandan Jayapal; Ashraf Dallol; Abdelbaset Buhmeida; Fatima Al-Thubaity; Mamdooh A GariI; Adeel Chaudhary; Adel M. Abuzenadah; Mohammed H. Al-Qahtani

BackgroundBreast cancer incidence rates are increasing at an alarming rate among Saudi Arabian females. Most molecular genetic discoveries on breast cancer and other cancers have arisen from studies examining European and American patients. However, possibility of specific changes in molecular signature among cancer patients of diverse ethnic groups remains largely unexplored. We performed transcriptomic profiling of surgically-resected breast tumors from 45 patients based in the Western region of Saudi Arabia using Affymetrix Gene 1.0 ST chip. Pathway and biological function-based clustering was apparent across the tissue samples.ResultsPathway analysis revealed canonical pathways that had not been previously implicated in breast cancer. Biological network analysis of differentially regulated genes revealed that Fatty acid binding protein 4, adipocyte (FABP4), adiponectin (ADIPOQ), and retinol binding protein 4 (RBP4) were most down regulated genes, sharing strong connection with the other molecules of lipid metabolism pathway. The marked biological difference in the signatures uncovered between the USA and Saudi samples underpins the importance of this study. Connectivity Map identified compounds that could reverse an observed gene expression signatureConclusionsThis study describes, to our knowledge, the first genome-wide profiling of breast cancer from Saudi ethnic females. We demonstrate the involvement of the lipid metabolism pathway in the pathogenesis of breast cancer from this region. This finding also highlights the need for strategies to curb the increasing rates of incidence of this disease by educating the public about life-style risk factors such as unhealthy diet and obesity.


G3: Genes, Genomes, Genetics | 2014

Reference genes for expression studies in hypoxia and hyperglycemia models in human umbilical vein endothelial cells.

Sherin Bakhashab; Sahira Lary; Farid Ahmed; Hans-Juergen Schulten; Ayat Bashir; Fahad Ahmed; Abdulrahman L. Al-Malki; Hasan S. Jamal; Mamdooh Gari; Jolanta U. Weaver

Human umbilical vein endothelial cell (HUVEC)-based gene expression studies performed under hypoxia and/or hyperglycemia show huge potential for modeling endothelial cell response in cardiovascular disease and diabetes. However, such studies require reference genes that are stable across the whole range of experimental conditions. These reference genes have not been comprehensively defined to date. We applied human genome-wide microarrays and quantitative real-time PCR (qRT-PCR) on RNA obtained from primary HUVEC cultures that were incubated for 24 hr either in euglycemic or in hyperglycemic conditions and then subjected to short-term CoCl2-induced hypoxia for 1, 3, or 12 hr. Using whole-transcript arrays, we selected 10 commonly used reference genes with no significant expression variation across eight different conditions. These genes were ranked using NormFinder software according to their stability values. Consequently, five genes were selected for validation by qRT-PCR. These were ribosomal protein large P0 (RPLP0), transferrin receptor (TFRC), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), β-glucuronidase (GUSB), and β-actin (ACTB). All five genes displayed stable expression under hyperglycemia. However, only RPLP0 and TFRC genes were stable under hypoxia up to 12 hr. Under hyperglycemia combined with hypoxia up to 12 hr, the expression of RPLP0, TFRC, GUSB, and ACTB genes remained unchanged. Our findings strongly confirm that RPLP0 and TFRC are the most suitable reference genes for HUVEC gene expression experiments subjected to hypoxia and/or hyperglycemia for the given experimental conditions. We provide further evidence that even commonly known references genes require experimental validation for all conditions involved.


BMC Genomics | 2015

Effect of BRAF mutational status on expression profiles in conventional papillary thyroid carcinomas

Hans-Juergen Schulten; Reem Alotibi; Alaa Al-Ahmadi; Manar Ata; Sajjad Karim; Etimad Huwait; Mamdooh Gari; Khalid A. Al-Ghamdi; Faisal Al-Mashat; Osman Abdel Al-Hamour; Mohammad H. Al-Qahtani; Jaudah Al-Maghrabi

BackgroundWhereas 40 % to 70 % of papillary thyroid carcinomas (PTCs) are characterized by a BRAF mutation (BRAFmut), unified biomarkers for the genetically heterogeneous group of BRAF wild type (BRAFwt) PTCs are not established yet. Using state-of-the-art technology we compared RNA expression profiles between conventional BRAFwt and BRAFmut PTCs.MethodsMicroarrays covering 36,079 reference sequences were used to generate whole transcript expression profiles in 11 BRAFwt PTCs including five micro PTCs, 14 BRAFmut PTCs, and 7 normal thyroid specimens. A p-value with a false discovery rate (FDR) < 0.05 and a fold change > 2 were used as a threshold of significance for differential expression. Network and pathway utilities were employed to interpret significance of expression data. BRAF mutational status was established by direct sequencing the hotspot region of exon 15.ResultsWe identified 237 annotated genes that were significantly differentially expressed between BRAFwt and BRAFmut PTCs. Of these, 110 genes were down- and 127 were upregulated in BRAFwt compared to BRAFmut PTCs. A number of molecules involved in thyroid hormone metabolism including thyroid peroxidase (TPO) were differentially expressed between both groups. Among cancer-associated molecules were ERBB3 that was downregulated and ERBB4 that was upregulated in BRAFwt PTCs. Two microRNAs were significantly differentially expressed of which miR492 bears predicted functions relevant to thyroid-specific molecules. The protein kinase A (PKA) and the G protein-coupled receptor pathways were identified as significantly related signaling cascades to the gene set of 237 genes. Furthermore, a network of interacting molecules was predicted on basis of the differentially expressed gene set.ConclusionsThe expression study focusing on affected genes that are differentially expressed between BRAFwt and BRAFmut conventional PTCs identified a number of molecules which are connected in a network and affect important canonical pathways. The identified gene set adds to our understanding of the tumor biology of BRAFwt and BRAFmut PTCs and contains genes/biomarkers of interest.


PLOS ONE | 2016

Microarray Expression Data Identify DCC as a Candidate Gene for Early Meningioma Progression.

Hans-Juergen Schulten; Deema Hussein; Fatima Al-Adwani; Sajjad Karim; Jaudah Al-Maghrabi; Mona Al-Sharif; Awatif Jamal; Fahad Alghamdi; Saleh S. Baeesa; Mohammed Bangash; Adeel Chaudhary; Mohammed H. Al-Qahtani

Meningiomas are the most common primary brain tumors bearing in a minority of cases an aggressive phenotype. Although meningiomas are stratified according to their histology and clinical behavior, the underlying molecular genetics predicting aggressiveness are not thoroughly understood. We performed whole transcript expression profiling in 10 grade I and four grade II meningiomas, three of which invaded the brain. Microarray expression analysis identified deleted in colorectal cancer (DCC) as a differentially expressed gene (DEG) enabling us to cluster meningiomas into DCC low expression (3 grade I and 3 grade II tumors), DCC medium expression (2 grade I and 1 grade II tumors), and DCC high expression (5 grade I tumors) groups. Comparison between the DCC low expression and DCC high expression groups resulted in 416 DEGs (p-value < 0.05; fold change > 2). The most significantly downregulated genes in the DCC low expression group comprised DCC, phosphodiesterase 1C (PDE1C), calmodulin-dependent 70kDa olfactomedin 2 (OLFM2), glutathione S-transferase mu 5 (GSTM5), phosphotyrosine interaction domain containing 1 (PID1), sema domain, transmembrane domain (TM) and cytoplasmic domain, (semaphorin) 6D (SEMA6D), and indolethylamine N-methyltransferase (INMT). The most significantly upregulated genes comprised chromosome 5 open reading frame 63 (C5orf63), homeodomain interacting protein kinase 2 (HIPK2), and basic helix-loop-helix family, member e40 (BHLHE40). Biofunctional analysis identified as predicted top upstream regulators beta-estradiol, TGFB1, Tgf beta complex, LY294002, and dexamethasone and as predicted top regulator effectors NFkB, PIK3R1, and CREBBP. The microarray expression data served also for a comparison between meningiomas from female and male patients and for a comparison between brain invasive and non-invasive meningiomas resulting in a number of significant DEGs and related biofunctions. In conclusion, based on its expression levels, DCC may constitute a valid biomarker to identify those benign meningiomas at risk for progression.


Oncology Reports | 2016

Low expression of leptin and its association with breast cancer: A transcriptomic study.

Sajjad Karim; Adnan Merdad; Hans-Juergen Schulten; Manikandan Jayapal; Ashraf Dallol; Abdelbaset Buhmeida; Fatima Al-Thubaity; Zeenat Mirza; Mamdooh Gari; Adeel Chaudhary; Adel M. Abuzenadah; Mohammed H. Al-Qahtani

The incidence of breast cancer is alarmingly increasing worldwide and also among Saudi women. Obesity is linked with an increased cancer risk and studies have also revealed that leptin may be involved in breast tumorigenesis particularly among obese women. Numerous transcriptomic studies have been carried out worldwide; however, molecular studies among breast cancer patients of diverse ethnic groups from the Arabian Peninsula are scarce. In the present study, whole transcriptome analysis of 45 surgically resected breast tumors from Saudi Arabian female patients was carried out. Expression data were analyzed, and molecular networks and canonical pathways were identified. We identified 1,159 differentially expressed genes using p-value with a false discovery rate <0.05 and a fold-change >2 as a cut-off. Using ingenuity pathway analysis tool, we identified many canonical pathways that were implicated in breast cancer for the first time. Notably, along with other lipid metabolism molecules, leptin (LEP) was one of the most downregulated genes (fold cut-off, −7.03) with significant differences between the breast cancer and the control groups (p<0.0001) and was further confirmed in all the samples using qPCR. Transcriptomic profiling of breast cancer from a Saudi female population revealed downregulation of LEP. Molecular pathway analysis demonstrated the role of LEP and other associated molecules of the lipid metabolism pathway. Involvement of leptin and lipid metabolism in breast cancer was highlighted. The majority of cases presented were of late stage, stressing the need to educate individuals concerning early diagnostic testing and the life-style risk factors for breast cancer such as unhealthy diet and obesity.


International Journal of Molecular Sciences | 2018

Proangiogenic Effect of Metformin in Endothelial Cells Is via Upregulation of VEGFR1/2 and Their Signaling under Hyperglycemia-Hypoxia

Sherin Bakhashab; Farid Ahmed; Hans-Juergen Schulten; Fahad Ahmed; Michael Glanville; Mohammed H. Al-Qahtani; Jolanta U. Weaver

Cardiovascular disease is the leading cause of morbidity/mortality worldwide. Metformin is the first therapy offering cardioprotection in type 2 diabetes and non-diabetic animals with unknown mechanism. We have shown that metformin improves angiogenesis via affecting expression of growth factors/angiogenic inhibitors in CD34+ cells under hyperglycemia-hypoxia. Now we studied the direct effect of physiological dose of metformin on human umbilical vein endothelial cells (HUVEC) under conditions mimicking hypoxia-hyperglycemia. HUVEC migration and apoptosis were studied after induction with euglycemia or hyperglycemia and/or CoCl2 induced hypoxia in the presence or absence of metformin. HUVEC mRNA was assayed by whole transcript microarrays. Genes were confirmed by qRT-PCR, proteins by western blot, ELISA or flow cytometry. Metformin promoted HUVEC migration and inhibited apoptosis via upregulation of vascular endothelial growth factor (VEGF) receptors (VEGFR1/R2), fatty acid binding protein 4 (FABP4), ERK/mitogen-activated protein kinase signaling, chemokine ligand 8, lymphocyte antigen 96, Rho kinase 1 (ROCK1), matrix metalloproteinase 16 (MMP16) and tissue factor inhibitor-2 under hyperglycemia-chemical hypoxia. Therefore, metformin’s dual effect in hyperglycemia-chemical hypoxia is mediated by direct effect on VEGFR1/R2 leading to activation of cell migration through MMP16 and ROCK1 upregulation, and inhibition of apoptosis by increase in phospho-ERK1/2 and FABP4, components of VEGF signaling cascades.

Collaboration


Dive into the Hans-Juergen Schulten's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Adeel Chaudhary

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sajjad Karim

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mamdooh Gari

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar

Ashraf Dallol

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deema Hussein

King Abdulaziz University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge