Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Lassmann is active.

Publication


Featured researches published by Hans Lassmann.


Annals of Neurology | 2000

Heterogeneity of multiple sclerosis lesions: Implications for the pathogenesis of demyelination

Claudia F. Lucchinetti; Wolfgang Brück; Joseph E. Parisi; Bernd W. Scheithauer; Moses Rodriguez; Hans Lassmann

Multiple sclerosis (MS) is a disease with profound heterogeneity in clinical course, neuroradiological appearance of the lesions, involvement of susceptibility gene loci, and response to therapy. These features are supported by experimental evidence, which demonstrates that fundamentally different processes, such as autoimmunity or virus infection, may induce MS‐like inflammatory demyelinating plaques and suggest that MS may be a disease with heterogeneous pathogenetic mechanisms. From a large pathology sample of MS, collected in three international centers, we selected 51 biopsies and 32 autopsies that contained actively demyelinating lesions defined by stringent criteria. The pathology of the lesions was analyzed using a broad spectrum of immunological and neurobiological markers. Four fundamentally different patterns of demyelination were found, defined on the basis of myelin protein loss, the geography and extension of plaques, the patterns of oligodendrocyte destruction, and the immunopathological evidence of complement activation. Two patterns (I and II) showed close similarities to T‐cell–mediated or T‐cell plus antibody–mediated autoimmune encephalomyelitis, respectively. The other patterns (III and IV) were highly suggestive of a primary oligodendrocyte dystrophy, reminiscent of virus‐ or toxin‐induced demyelination rather than autoimmunity. At a given time point of the disease—as reflected in autopsy cases—the patterns of demyelination were heterogeneous between patients, but were homogenous within multiple active lesions from the same patient. This pathogenetic heterogeneity of plaques from different MS patients may have fundamental implications for the diagnosis and therapy of this disease. Ann Neurol 2000;47:707–717


American Journal of Pathology | 2000

Multiple Sclerosis and Chronic Autoimmune Encephalomyelitis : A Comparative Quantitative Study of Axonal Injury in Active, Inactive, and Remyelinated Lesions

Barbara Kornek; Maria K. Storch; Robert Weissert; Erik Wallstroem; Andreas Stefferl; Tomas Olsson; Christopher Linington; Manfred Schmidbauer; Hans Lassmann

Recent magnetic resonance (MR) studies of multiple sclerosis lesions indicate that axonal injury is a major correlate of permanent clinical deficit. In the present study we systematically quantified acute axonal injury, defined by immunoreactivity for beta-amyloid-precursor-protein in dystrophic neurites, in the central nervous system of 22 multiple sclerosis patients and 18 rats with myelin-oligodendrocyte glycoprotein (MOG)-induced chronic autoimmune encephalomyelitis (EAE). The highest incidence of acute axonal injury was found during active demyelination, which was associated with axonal damage in periplaque and in the normal appearing white matter of actively demyelinating cases. In addition, low but significant axonal injury was also observed in inactive demyelinated plaques. In contrast, no significant axonal damage was found in remyelinated shadow plaques. The patterns of axonal pathology in chronic active EAE were qualitatively and quantitatively similar to those found in multiple sclerosis. Our studies confirm previous observations of axonal destruction in multiple sclerosis lesions during active demyelination, but also indicate that ongoing axonal damage in inactive lesions may significantly contribute to the clinical progression of the disease. The results further emphasize that MOG-induced EAE may serve as a suitable model for testing axon-protective therapies in inflammatory demyelinating conditions.


Brain Pathology | 2007

The immunopathology of multiple sclerosis: an overview.

Hans Lassmann; Wolfgang Brück; Claudia F. Lucchinetti

Multiple sclerosis (MS) is traditionally seen as an inflammatory demyelinating disease, characterized by the formation of focal demyelinated plaques in the white matter of the central nervous system. In this review we describe recent evidence that the spectrum of MS pathology is much broader. This includes demyelination in the cortex and deep gray matter nuclei, as well as diffuse injury of the normal‐appearing white matter. The mechanisms responsible for the formation of focal lesions in different patients and in different stages of the disease as well as those involved in the induction of diffuse brain damage are complex and heterogeneous. This heterogeneity is reflected by different clinical manifestations of the disease, such as relapsing or progressive MS, and also explains at least in part the relation of MS to other inflammatory demyelinating diseases.


Brain | 2009

The relation between inflammation and neurodegeneration in multiple sclerosis brains

Josa M. Frischer; Stephan Bramow; Assunta Dal-Bianco; Claudia F. Lucchinetti; Helmut Rauschka; Manfred Schmidbauer; Henning Laursen; Per Soelberg Sørensen; Hans Lassmann

Some recent studies suggest that in progressive multiple sclerosis, neurodegeneration may occur independently from inflammation. The aim of our study was to analyse the interdependence of inflammation, neurodegeneration and disease progression in various multiple sclerosis stages in relation to lesional activity and clinical course, with a particular focus on progressive multiple sclerosis. The study is based on detailed quantification of different inflammatory cells in relation to axonal injury in 67 multiple sclerosis autopsies from different disease stages and 28 controls without neurological disease or brain lesions. We found that pronounced inflammation in the brain is not only present in acute and relapsing multiple sclerosis but also in the secondary and primary progressive disease. T- and B-cell infiltrates correlated with the activity of demyelinating lesions, while plasma cell infiltrates were most pronounced in patients with secondary progressive multiple sclerosis (SPMS) and primary progressive multiple sclerosis (PPMS) and even persisted, when T- and B-cell infiltrates declined to levels seen in age matched controls. A highly significant association between inflammation and axonal injury was seen in the global multiple sclerosis population as well as in progressive multiple sclerosis alone. In older patients (median 76 years) with long-disease duration (median 372 months), inflammatory infiltrates declined to levels similar to those found in age-matched controls and the extent of axonal injury, too, was comparable with that in age-matched controls. Ongoing neurodegeneration in these patients, which exceeded the extent found in normal controls, could be attributed to confounding pathologies such as Alzheimers or vascular disease. Our study suggests a close association between inflammation and neurodegeneration in all lesions and disease stages of multiple sclerosis. It further indicates that the disease processes of multiple sclerosis may die out in aged patients with long-standing disease.


Brain Pathology | 1996

Distinct Patterns of Multiple Sclerosis Pathology Indicates Heterogeneity in Pathogenesis

Claudia F. Lucchinetti; Wolfgang Brück; Moses Rodriguez; Hans Lassmann

Multiple sclerosis is an inflammatory demyeli‐nating disease of the central nervous system. The hallmark of its pathology is the demyelinated plaque with reactive glial scar formation. However, a detailed analysis of the patterns of demyelination, oligodendroglia cell pathology and the reaction of other tissue components suggests that the pathogenesis of myelin destruction in this disease may be heterogeneous. In this review we present a new classification scheme of lesional activity on the basis of the molecular composition of myelin degradation products in macrophages. When these criteria are used, different patterns of demyelination can be distinguished, including demyelination with relative preservation of oligodendrocytes, myelin destruction with concomitant and complete destruction of oligodendrocytes or primary destruction or disturbance of myelinating cells with secondary demyelination. Furthermore, in some cases a primary selective demyelination may be followed by secondary oligodendrocyte loss in the established lesions. Finally, some extraordinarily severe conditions may result in destructive lesions with loss of myelin, oligodendrocytes, axons and astro‐cytes. This heterogeneity of plaque pathology is discussed in the context of recent experimental models of inflammatory demyelination, which show that different immunological pathways may lead to the formation of demyelinated plaques that reveal the diverse structural aspects described above. Our data indicate, that the demyelinated plaques of multiple sclerosis may reflect a common pathological end point of a variety of different immunological mechanisms of myelin destruction in this disease.


The New England Journal of Medicine | 2011

Inflammatory cortical demyelination in early multiple sclerosis

Claudia F. Lucchinetti; Bogdan F. Gh. Popescu; Reem F. Bunyan; Natalia M. Moll; Shanu F. Roemer; Hans Lassmann; Wolfgang Brück; Joseph E. Parisi; Bernd W. Scheithauer; Caterina Giannini; Stephen D. Weigand; Jay Mandrekar; Richard M. Ransohoff

BACKGROUND Cortical disease has emerged as a critical aspect of the pathogenesis of multiple sclerosis, being associated with disease progression and cognitive impairment. Most studies of cortical lesions have focused on autopsy findings in patients with long-standing, chronic, progressive multiple sclerosis, and the noninflammatory nature of these lesions has been emphasized. Magnetic resonance imaging studies indicate that cortical damage occurs early in the disease. METHODS We evaluated the prevalence and character of demyelinating cortical lesions in patients with multiple sclerosis. Cortical tissues were obtained in passing during biopsy sampling of white-matter lesions. In most cases, biopsy was done with the use of stereotactic procedures to diagnose suspected tumors. Patients with sufficient cortex (138 of 563 patients screened) were evaluated for cortical demyelination. Using immunohistochemistry, we characterized cortical lesions with respect to demyelinating activity, inflammatory infiltrates, the presence of meningeal inflammation, and a topographic association between cortical demyelination and meningeal inflammation. Diagnoses were ascertained in a subgroup of 77 patients (56%) at the last follow-up visit (at a median of 3.5 years). RESULTS Cortical demyelination was present in 53 patients (38%) (104 lesions and 222 tissue blocks) and was absent in 85 patients (121 tissue blocks). Twenty-five patients with cortical demyelination had definite multiple sclerosis (81% of 31 patients who underwent long-term follow-up), as did 33 patients without cortical demyelination (72% of 46 patients who underwent long-term follow-up). In representative tissues, 58 of 71 lesions (82%) showed CD3+ T-cell infiltrates, and 32 of 78 lesions (41%) showed macrophage-associated demyelination. Meningeal inflammation was topographically associated with cortical demyelination in patients who had sufficient meningeal tissue for study. CONCLUSIONS In this cohort of patients with early-stage multiple sclerosis, cortical demyelinating lesions were frequent, inflammatory, and strongly associated with meningeal inflammation. (Funded by the National Multiple Sclerosis Society and the National Institutes of Health.).


Trends in Molecular Medicine | 2001

Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy

Hans Lassmann; Wolfgang Brück; Claudia F. Lucchinetti

Multiple sclerosis is a chronic inflammatory disease of the nervous system in which a T-cell-mediated inflammatory process is associated with destruction of myelin sheaths. Although demyelination is the primary event, axons are also destroyed in the lesions, and the loss of axons correlates with permanent functional deficit. Here, we discuss evidence that demyelination and axonal destruction follow different pathogenetic pathways in subgroups of patients. This might, at least in part, explain the heterogeneity in genetic susceptibility, clinical presentation and response to treatment observed between individuals.


Brain Pathology | 1998

Autoimmunity to Myelin Oligodendrocyte Glycoprotein in Rats Mimics the Spectrum of Multiple Sclerosis Pathology

Maria K. Storch; Andreas Stefferl; Uschi Brehm; Robert Weissert; Erik Wallström; Martin Kerschensteiner; Tomas Olsson; Christopher Linington; Hans Lassmann

Multiple sclerosis is a chronic inflammatory disease characterized by perivenous inflammation and focal destruction of myelin. Many attempts have been undertaken previously to create animal models of chronic inflammatory demyelinating diseases through autoimmunity or virus infection. Recently, however, a new model of myelin oligodendrocyte glycoprotein (MOG) induced autoimmune encephalomyelitis became available, which, in a very standardized and predictable way, leads to chronic (relapsing or progressive) disease and widespread CNS demyelination.


Acta Neuropathologica | 1995

Cell death in Alzheimer's disease evaluated by DNA fragmentation in situ.

Hans Lassmann; Christian Bancher; Helene Breitschopf; Jerzy Wegiel; Maciej Bobinski; Kurt A. Jellinger; H. M. Wisniewski

Loss of nerve cells is a hallmark of the pathology of Alzheimers disease (AD), yet the patterns of cell death are unknown. By analyzing DNA fragmentation in situ we found evidence for cell death not only of nerve cells but also of oligodendrocytes and microglia in AD brains. In average, 30 times more brain cells showed DNA fragmentation in AD as compared to age-matched controls. Nuclear alterations suggestive of apoptosis were rare in degenerating cells. Even though the majority of degenerating cells were not located within amyloid deposits and did not contain neurofibrillary tangles, neurons situated within areas of amyloid deposits or affected by neurofibrillary degeneration revealed a higher risk of DNA fragmentation and death than cells not exposed to these AD changes.


Annals of Neurology | 2009

Neuromyelitis optica: pathogenicity of patient immunoglobulin in vivo.

Monika Bradl; Tatsuro Misu; Toshiyuki Takahashi; Mitsutoshi Watanabe; Simone Mader; Markus Reindl; Milena Z. Adzemovic; Jan Bauer; Thomas Berger; Kazuo Fujihara; Yasuto Itoyama; Hans Lassmann

Severe inflammation and astrocyte loss with profound demyelination in spinal cord and optic nerves are typical pathological features of neuromyelitis optica (NMO). A diagnostic hallmark of this disease is the presence of serum autoantibodies against the water channel aquaporin‐4 (AQP‐4) on astrocytes.

Collaboration


Dive into the Hans Lassmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Bauer

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Monika Bradl

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar

Maria K. Storch

Medical University of Graz

View shared research outputs
Top Co-Authors

Avatar

Simon Hametner

Medical University of Vienna

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Olsson

Karolinska University Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge