Hans M. Larsson
École Polytechnique Fédérale de Lausanne
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans M. Larsson.
Frontiers in Bioengineering and Biotechnology | 2015
Mikaël M. Martino; Sime Brkic; Emmanuela Bovo; Maximilian Burger; Dirk J. Schaefer; Thomas Wolff; Lorenz Gürke; Priscilla S. Briquez; Hans M. Larsson; Roberto Gianni-Barrera; Jeffrey A. Hubbell; Andrea Banfi
Blood vessel growth plays a key role in regenerative medicine, both to restore blood supply to ischemic tissues and to ensure rapid vascularization of clinical-size tissue-engineered grafts. For example, vascular endothelial growth factor (VEGF) is the master regulator of physiological blood vessel growth and is one of the main molecular targets of therapeutic angiogenesis approaches. However, angiogenesis is a complex process and there is a need to develop rational therapeutic strategies based on a firm understanding of basic vascular biology principles, as evidenced by the disappointing results of initial clinical trials of angiogenic factor delivery. In particular, the spatial localization of angiogenic signals in the extracellular matrix (ECM) is crucial to ensure the proper assembly and maturation of new vascular structures. Here, we discuss the therapeutic implications of matrix interactions of angiogenic factors, with a special emphasis on VEGF, as well as provide an overview of current approaches, based on protein and biomaterial engineering that mimic the regulatory functions of ECM to optimize the signaling microenvironment of vascular growth factors.
PLOS ONE | 2012
Hans M. Larsson; Seung Tae Lee; Marta Roccio; Diana Velluto; Matthias P. Lutolf; Peter Frey; Jeffrey A. Hubbell
While cell sorting usually relies on cell-surface protein markers, molecular beacons (MBs) offer the potential to sort cells based on the presence of any expressed mRNA and in principle could be extremely useful to sort rare cell populations from primary isolates. We show here how stem cells can be purified from mixed cell populations by sorting based on MBs. Specifically, we designed molecular beacons targeting Sox2, a well-known stem cell marker for murine embryonic (mES) and neural stem cells (NSC). One of our designed molecular beacons displayed an increase in fluorescence compared to a nonspecific molecular beacon both in vitro and in vivo when tested in mES and NSCs. We sorted Sox2-MB+SSEA1+ cells from a mixed population of 4-day retinoic acid-treated mES cells and effectively isolated live undifferentiated stem cells. Additionally, Sox2-MB+ cells isolated from primary mouse brains were sorted and generated neurospheres with higher efficiency than Sox2-MB− cells. These results demonstrate the utility of MBs for stem cell sorting in an mRNA-specific manner.
PLOS ONE | 2014
Hans M. Larsson; Francois Gorostidi; Jeffrey A. Hubbell; Yann Barrandon; Peter Frey
Although urothelial progenitor-like cells have been described in the human urinary tract, the existence of stem cells remains to be proven. Using a culture system that favors clonogenic epithelial cell growth, we evaluated and characterized clonal human urothelial cells. We isolated human urothelial cells that were clonogenic, capable of self-renewal and could develop into fully differentiated urothelium once re-implanted into the subcapsular space of nude mice. In addition to final urothelial cell differentiation, spontaneous formation of bladder-like microstructures was observed. By examining an epithelial stem cell signature marker, we found p63 to correlate with the self-renewal capacity of the isolated human urothelial clonal populations. Since a clinically relevant, long-term model for functional reconstitution of human cells does not exist, we sought to establish a culture method for porcine urothelial cells in a clinically relevant porcine model. We isolated cells from porcine ureter, urethra and bladder that were clonogenic and capable of self-renewal and differentiation into fully mature urothelium. In conclusion, we could isolate human and porcine cell populations, behaving as urothelial stem cells and showing clonogenicity, self-renewal and, once re-implanted, morphological differentiation.
Acta Biomaterialia | 2016
E. Vardar; Hans M. Larsson; Eva-Maria Engelhardt; K. Pinnagoda; Priscilla S. Briquez; Jeffrey A. Hubbell; Peter Frey
UNLABELLED Clinical success of bladder reconstructive procedures could be promoted by the availability of functional biomaterials. In this study, we have developed a multi-layered scaffold consisting of a bioactive fibrin layer laminated between two collagen sheets all having undergone plastic compression. With this construct we performed bladder augmentation in a nude rat model after partial bladder excision and evaluated the morphological and functional behavior of the implant. The fibrin was functionalized with a recombinant human insulin-like growth factor-1 (IGF-1) variant that covalently binds fibrin during polymerization and has a matrix metalloproteinase-cleavage insert to enable cell-mediated release. The purified IGF-1 variant showed similar bioactivity in vitro compared to commercially available wild type (wt) IGF-1, inducing receptor phosphorylation and induction of human smooth muscle cell proliferation. In vivo, the multi-layered bioactive collagen-fibrin scaffolds loaded with the IGF-1 variant triggered dose-dependent functional host smooth muscle cell invasion and bundle formation with re-urothelialization 4weeks after surgery in a rat model. STATEMENT OF SIGNIFICANCE The design of new bio-functional scaffolds that can be employed for bladder reconstructive procedures is a growing focus in the field of tissue engineering. In this study, a fibrin binding form of human insulin-like growth factor-1 (IGF-1) was produced and used to functionalize a multi-layered collagen-fibrin scaffold consisting of bioactive fibrin layer, sandwiched between two collagen gels. An effective dosage of our IGF-1 variant was successfully determined via a nude rat bladder model, which may play a critical role in estimating its therapeutic dosage in clinical trials. Thus, this new bioactive scaffold may offer an advanced approach to accelerate bladder regeneration.
Acta Biomaterialia | 2016
K. Pinnagoda; Hans M. Larsson; Ganesh Vythilingam; E. Vardar; Eva-Maria Engelhardt; Rajendrarao C. Thambidorai; Jeffrey A. Hubbell; Peter Frey
UNLABELLED The treatment of congenital malformations or injuries of the urethra using existing autologous tissues can be associated with post-operative complications. Using rat-tail collagen, we have engineered an acellular high-density collagen tube. These tubes were made of 2 layers and they could sustain greater burst pressures than the monolayered tubes. Although it remains a weak material this 2 layered tube could be sutured to the native urethra. In 20 male New Zealand white rabbits, 2cm long grafts were sutured in place after subtotal excision of the urethra. This long-term study was performed in Lausanne (Switzerland) and in Kuala Lumpur (Malaysia). No catheter was placed post-operatively. All rabbits survived the surgical implantation. The animals were evaluated at 1, 3, 6, and 9months by contrast voiding cysto-urethrography, histological examination and immunohistochemistry. Spontaneous re-population of urothelial and smooth muscle cells on all grafts was demonstrated. Cellular organization increased with time, however, 20% of both fistula and stenosis could be observed post-operatively. This off-the shelf scaffold with a promising urethral regeneration has a potential for clinical application. STATEMENT OF SIGNIFICANCE In this study we have tissue engineered a novel cell free tubular collagen based scaffold and used it as a urethral graft in a rabbit model. The novelty of our technique is that the tube can be sutured. Testing showed better burst pressures and the grafts could then be successfully implanted after a urethral excision. This long term study demonstrated excellent biocompatibility of the 2cm graft and gradual regeneration with time, challenging the current literature. Finally, the main impact is that we describe an off-the-shelf and cost-effective product with comparable surgical outcome to the cellular grafts.
Science Translational Medicine | 2017
Jun Ishihara; Kazuto Fukunaga; Ako Ishihara; Hans M. Larsson; Lambert Potin; Peyman Hosseinchi; Gabriele Galliverti; Melody A. Swartz; Jeffrey A. Hubbell
Matrix-binding peptide conjugation to immune checkpoint blockade antibodies enhances antitumor efficacy and reduces adverse events. Keeping immunotherapy closer to home Immune checkpoint inhibitors are gaining increasing prominence in the field of cancer because of their remarkable success record in many difficult-to-treat tumor types. Unfortunately, activation of the immune system against tumors does not occur in isolation, and these drugs are also associated with a host of immune side effects, which limit their usefulness. To decrease systemic toxicity, Ishihara et al. conjugated immune checkpoint antibodies to a matrix-binding peptide and showed that peritumoral injection of these conjugated antibodies results in their retention in tumor tissue, effective antitumor response, and systemic antitumor immunity with fewer adverse effects. Immune checkpoint blockade exhibits considerable antitumor activity, but previous studies have reported instances of severe treatment-related adverse events. We sought to explore local immune checkpoint blockade, with an antibody (Ab) form that would be retained intra- or peritumorally, limiting systemic exposure. To accomplish this, we conjugated the checkpoint blockade Abs to an extracellular matrix (ECM)–super-affinity peptide derived from placenta growth factor–2 (PlGF-2123–144). We show enhanced tissue retention and lower Ab concentrations in blood plasma after PlGF-2123–144 conjugation, reducing systemic side effects such as the risk of autoimmune diabetes. Peritumoral injections of PlGF-2123–144–anti-CTLA4 (cytotoxic T lymphocyte antigen 4) and PlGF-2123–144–anti–PD-L1 (programmed death ligand 1) Abs delayed tumor growth and prolonged survival compared to the unmodified Abs in genetically engineered murine tumor models of melanoma and breast cancer. The PlGF-2123–144–Abs increased tumor-infiltrating activated CD8+ and CD4+ T cells, resulting in a delay of distant tumor growth as well. This simple and translatable approach of engineered ECM-binding Abs may present a viable and safer approach in checkpoint blockade.
Scientific Reports | 2018
Hans M. Larsson; Ganesh Vythilingam; K. Pinnagoda; E. Vardar; Eva-Maria Engelhardt; S. Sothilingam; Rajendrarao C. Thambidorai; Tunku Kamarul; Jeffrey A. Hubbell; Peter Frey
There is a need for efficient and “off-the-shelf” grafts in urethral reconstructive surgery. Currently available surgical techniques require harvesting of grafts from autologous sites, with increased risk of surgical complications and added patient discomfort. Therefore, a cost-effective and cell-free graft with adequate regenerative potential has a great chance to be translated into clinical practice. Tubular cell-free collagen grafts were prepared by varying the collagen density and fiber distribution, thereby creating a polarized low fiber density collagen graft (LD-graft). A uniform, high fiber density collagen graft (HD-graft) was engineered as a control. These two grafts were implanted to bridge a 2 cm long iatrogenic urethral defect in a rabbit model. Histology revealed that rabbits implanted with the LD-graft had a better smooth muscle regeneration compared to the HD-graft. The overall functional outcome assessed by contrast voiding cystourethrography showed patency of the urethra in 90% for the LD-graft and in 66.6% for the HD-graft. Functional regeneration of the rabbit implanted with the LD-graft could further be demonstrated by successful mating, resulting in healthy offspring. In conclusion, cell-free low-density polarized collagen grafts show better urethral regeneration than high-density collagen grafts.
Acta Biomaterialia | 2017
E. Vardar; Hans M. Larsson; Simone Allazetta; Eva-Maria Engelhardt; K. Pinnagoda; G. Vythilingam; Jeffrey A. Hubbell; Matthias P. Lutolf; Peter Frey
Endoscopic injection of bulking agents has been widely used to treat urinary incontinence, often due to urethral sphincter complex insufficiency. The aim of the study was to develop a novel injectable bioactive collagen-fibrin bulking agent restoring long-term continence by functional muscle tissue regeneration. Fibrin micro-beads were engineered using a droplet microfluidic system. They had an average diameter of 140 μm and recombinant fibrin-binding insulin-like growth factor-1 (α2PI1-8-MMP-IGF-1) was covalently conjugated to the beads. A plasmin fibrin degradation assay showed that 72.5% of the initial amount of α2PI1-8-MMP-IGF-1 loaded into the micro-beads was retained within the fibrin micro-beads. In vitro, the growth factor modified fibrin micro-beads enhanced cell attachment and the migration of human urinary tract smooth muscle cells, however, no change of the cellular metabolic activity was seen. These bioactive micro-beads were mixed with genipin-crosslinked homogenized collagen, acting as a carrier. The collagen concentration, the degree of crosslinking, and the mechanical behavior of this bioactive collagen-fibrin injectable were comparable to reference samples. This novel injectable showed no burst release of the growth factor, had a positive effect on cell behavior and may therefore induce smooth muscle regeneration in vivo, necessary for the functional treatment of stress and other urinary incontinences. STATEMENT OF SIGNIFICANCE Urinary incontinence is involuntary urine leakage, resulting from a deficient function of the sphincter muscle complex. Yet there is no functional cure for this devastating condition using current treatment options. Applied physical and surgical therapies have limited success. In this study, a novel bioactive injectable bulking agent, triggering new muscle regeneration at the injection site, has been evaluated. This injectable consists of cross-linked collagen and fibrin micro-beads, functionalized with bound insulin-like growth factor-1 (α2PI1-8-MMP-IGF-1). These bioactive fibrin micro-beads induced human smooth muscle cell migration in vitro. Thus, this injectable bulking agent is apt to be a good candidate for regeneration of urethral sphincter muscle, ensuring a long-lasting treatment for urinary incontinence.
Tissue Engineering Part A | 2015
E. Vardar; Eva-Maria Engelhardt; Hans M. Larsson; Elodie Mouloungui; K. Pinnagoda; Jeffrey A. Hubbell; Peter Frey
Biomaterials | 2017
Priscilla S. Briquez; Kristen M. Lorentz; Hans M. Larsson; Peter Frey; Jeffrey A. Hubbell