Hans Orru
University of Tartu
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans Orru.
Journal of Environmental Management | 2014
Matthias Demuzere; Kati Orru; Oliver Heidrich; E Olazabal; Davide Geneletti; Hans Orru; Ajay Gajanan Bhave; Neha Mittal; Efren Feliu; M Faehnle
In order to develop climate resilient urban areas and reduce emissions, several opportunities exist starting from conscious planning and design of green (and blue) spaces in these landscapes. Green urban infrastructure has been regarded as beneficial, e.g. by balancing water flows, providing thermal comfort. This article explores the existing evidence on the contribution of green spaces to climate change mitigation and adaptation services. We suggest a framework of ecosystem services for systematizing the evidence on the provision of bio-physical benefits (e.g. CO2 sequestration) as well as social and psychological benefits (e.g. improved health) that enable coping with (adaptation) or reducing the adverse effects (mitigation) of climate change. The multi-functional and multi-scale nature of green urban infrastructure complicates the categorization of services and benefits, since in reality the interactions between various benefits are manifold and appear on different scales. We will show the relevance of the benefits from green urban infrastructures on three spatial scales (i.e. city, neighborhood and site specific scales). We will further report on co-benefits and trade-offs between the various services indicating that a benefit could in turn be detrimental in relation to other functions. The manuscript identifies avenues for further research on the role of green urban infrastructure, in different types of cities, climates and social contexts. Our systematic understanding of the bio-physical and social processes defining various services allows targeting stressors that may hamper the provision of green urban infrastructure services in individual behavior as well as in wider planning and environmental management in urban areas.
European Respiratory Journal | 2013
Hans Orru; Camilla Andersson; Kristie L. Ebi; Joakim Langner; Christofer Åström; Bertil Forsberg
Ozone is a highly oxidative pollutant formed from precursors in the presence of sunlight, associated with respiratory morbidity and mortality. All else being equal, concentrations of ground-level ozone are expected to increase due to climate change. Ozone-related health impacts under a changing climate are projected using emission scenarios, models and epidemiological data. European ozone concentrations are modelled with the model of atmospheric transport and chemistry (MATCH)-RCA3 (50×50 km). Projections from two climate models, ECHAM4 and HadCM3, are applied under greenhouse gas emission scenarios A2 and A1B, respectively. We applied a European-wide exposure–response function to gridded population data and country-specific baseline mortality and morbidity. Comparing the current situation (1990–2009) with the baseline period (1961–1990), the largest increase in ozone-associated mortality and morbidity due to climate change (4–5%) have occurred in Belgium, Ireland, the Netherlands and the UK. Comparing the baseline period and the future periods (2021–2050 and 2041–2060), much larger increases in ozone-related mortality and morbidity are projected for Belgium, France, Spain and Portugal, with the impact being stronger using the climate projection from ECHAM4 (A2). However, in Nordic and Baltic countries the same magnitude of decrease is projected. The current study suggests that projected effects of climate change on ozone concentrations could differentially influence mortality and morbidity across Europe.
Environmental Health | 2009
Hans Orru; Erik Teinemaa; Taavi Lai; Tanel Tamm; Marko Kaasik; Veljo Kimmel; Kati Kangur; Eda Merisalu; Bertil Forsberg
BackgroundHealth impact assessments (HIA) use information on exposure, baseline mortality/morbidity and exposure-response functions from epidemiological studies in order to quantify the health impacts of existing situations and/or alternative scenarios. The aim of this study was to improve HIA methods for air pollution studies in situations where exposures can be estimated using GIS with high spatial resolution and dispersion modeling approaches.MethodsTallinn was divided into 84 sections according to neighborhoods, with a total population of approx. 390 000 persons. Actual baseline rates for total mortality and hospitalization with cardiovascular and respiratory diagnosis were identified. The exposure to fine particles (PM2.5) from local emissions was defined as the modeled annual levels. The model validation and morbidity assessment were based on 2006 PM10 or PM2.5 levels at 3 monitoring stations. The exposure-response coefficients used were for total mortality 6.2% (95% CI 1.6–11%) per 10 μg/m3 increase of annual mean PM2.5 concentration and for the assessment of respiratory and cardiovascular hospitalizations 1.14% (95% CI 0.62–1.67%) and 0.73% (95% CI 0.47–0.93%) per 10 μg/m3 increase of PM10. The direct costs related to morbidity were calculated according to hospital treatment expenses in 2005 and the cost of premature deaths using the concept of Value of Life Year (VOLY).ResultsThe annual population-weighted-modeled exposure to locally emitted PM2.5 in Tallinn was 11.6 μg/m3. Our analysis showed that it corresponds to 296 (95% CI 76528) premature deaths resulting in 3859 (95% CI 10236636) Years of Life Lost (YLL) per year. The average decrease in life-expectancy at birth per resident of Tallinn was estimated to be 0.64 (95% CI 0.17–1.10) years. While in the polluted city centre this may reach 1.17 years, in the least polluted neighborhoods it remains between 0.1 and 0.3 years. When dividing the YLL by the number of premature deaths, the decrease in life expectancy among the actual cases is around 13 years. As for the morbidity, the short-term effects of air pollution were estimated to result in an additional 71 (95% CI 43–104) respiratory and 204 (95% CI 131–260) cardiovascular hospitalizations per year. The biggest external costs are related to the long-term effects on mortality: this is on average €150 (95% CI 40–260) million annually. In comparison, the costs of short-term air-pollution driven hospitalizations are small €0.3 (95% CI 0.2–0.4) million.ConclusionSectioning the city for analysis and using GIS systems can help to improve the accuracy of air pollution health impact estimations, especially in study areas with poor air pollution monitoring data but available dispersion models.
Journal of Environmental Management | 2016
Oliver Heidrich; Diana Reckien; Marta Olazabal; Aoife Foley; Monica Salvia; S. De Gregorio Hurtado; Hans Orru; J. Flacke; Davide Geneletti; Filomena Pietrapertosa; J J-P Hamann; Abhishek Tiwary; Efren Feliu; Richard Dawson
Globally, efforts are underway to reduce anthropogenic greenhouse gas emissions and to adapt to climate change impacts at the local level. However, there is a poor understanding of the relationship between city strategies on climate change mitigation and adaptation and the relevant policies at national and European level. This paper describes a comparative study and evaluation of cross-national policy. It reports the findings of studying the climate change strategies or plans from 200 European cities from Austria, Belgium, Estonia, Finland, France, Germany, Ireland, Italy, Netherlands, Spain and the United Kingdom. The study highlights the shared responsibility of global, European, national, regional and city policies. An interpretation and illustration of the influences from international and national networks and policy makers in stimulating the development of local strategies and actions is proposed. It was found that there is no archetypical way of planning for climate change, and multiple interests and motivations are inevitable. Our research warrants the need for a multi-scale approach to climate policy in the future, mainly ensuring sufficient capacity and resource to enable local authorities to plan and respond to their specific climate change agenda for maximising the management potentials for translating environmental challenges into opportunities.
BMJ Open | 2013
Christofer Åström; Hans Orru; Joacim Rocklöv; Gustav Strandberg; Kristie L. Ebi; Bertil Forsberg
Objectives Respiratory diseases are ranked second in Europe in terms of mortality, prevalence and costs. Studies have shown that extreme heat has a large impact on mortality and morbidity, with a large relative increase for respiratory diseases. Expected increases in mean temperature and the number of extreme heat events over the coming decades due to climate change raise questions about the possible health impacts. We assess the number of heat-related respiratory hospital admissions in a future with a different climate. Design A Europe-wide health impact assessment. Setting An assessment for each of the EU27 countries. Methods Heat-related hospital admissions under a changing climate are projected using multicity epidemiological exposure–response relationships applied to gridded population data and country-specific baseline respiratory hospital admission rates. Times-series of temperatures are simulated with a regional climate model based on four global climate models, under two greenhouse gas emission scenarios. Results Between a reference period (1981–2010) and a future period (2021–2050), the total number of respiratory hospital admissions attributed to heat is projected to be larger in southern Europe, with three times more heat attributed respiratory hospital admissions in the future period. The smallest change was estimated in Eastern Europe with about a twofold increase. For all of Europe, the number of heat-related respiratory hospital admissions is projected to be 26 000 annually in the future period compared with 11 000 in the reference period. Conclusions The results suggest that the projected effects of climate change on temperature and the number of extreme heat events could substantially influence respiratory morbidity across Europe.
International Journal of Environmental Research and Public Health | 2009
Hans Orru; Rain Jögi; Marko Kaasik; Bertil Forsberg
The relationship between exposure to traffic induced particles, respiratory health and cardiac diseases was studied in the RHINE Tartu cohort. A postal questionnaire with commonly used questions regarding respiratory symptoms, cardiac disease, lifestyle issues such as smoking habits, indoor environment, occupation, early life exposure and sleep disorders was sent to 2,460 adults. The annual concentrations of local traffic induced particles were modelled with an atmospheric dispersion model with traffic flow data, and obtained PMexhaust concentrations in 40 × 40 m grids were linked with home addresses with GIS. The relationship between the level of exhaust particles outside home and self-reported health problems were analyzed using a multiple logistic regression model. We found a significant relation between fine exhaust particles and cardiac disease, OR = 1.64 (95% CI 1.12–2.43) for increase in PMexhaust corresponding to the fifth to the 95th percentile range. The associations also were positive but non-significant for hypertension OR = 1.42 (95% CI 0.94–2.13), shortness of breath OR = 1.27 (95% CI 0.84–1.94) and other respiratory symptoms.
Journal of Exposure Science and Environmental Epidemiology | 2015
Hans Orru; Boel Lövenheim; Christer Johansson; Bertil Forsberg
A planned 21 km bypass (18 km within a tunnel) in Stockholm is expected to reduce ambient air exposure to traffic emissions, but same time tunnel users could be exposed to high concentrations of pollutants. For the health impacts calculations in 2030, the change in annual ambient NOX and PM10 exposure of the general population was modelled in 100 × 100 m2 grids for Greater Stockholm area. The tunnel exposure was estimated based on calculated annual average NOX concentrations, time spent in tunnel and number of tunnel users. For the general population, we estimate annually 23.7 (95% CI: 17.7–32.3) fewer premature deaths as ambient concentrations are reduced. At the same time, tunnel users will be exposed to NOX levels up to 2000 μg/m−3. Passing through the whole tunnel two times on working days would correspond to an additional annual NOX exposure of 9.6 μg/m3. Assuming that there will be ~55,000 vehicles daily each way and 1.3 persons of 30–74 years of age in each vehicle, we estimate the tunnel exposure to result in 20.6 (95% CI: 14.1–25.6) premature deaths annually. If there were more persons per vehicle, or older and vulnerable people travelling, or tunnel dispersion conditions worsen, the adverse effect would become larger.
PLOS ONE | 2016
Daniel Oudin Åström; Christofer Åström; Kaidi Rekker; Ene Indermitte; Hans Orru
Background On-going climate change is predicted to result in a growing number of extreme weather events—such as heat waves—throughout Europe. The effect of high temperatures and heat waves are already having an important impact on public health in terms of increased mortality, but studies from an Estonian setting are almost entirely missing. We investigated mortality in relation to high summer temperatures and the time course of mortality in a coastal and inland region of Estonia. Methods We collected daily mortality data and daily maximum temperature for a coastal and an inland region of Estonia. We applied a distributed lag non-linear model to investigate heat related mortality and the time course of mortality in Estonia. Results We found an immediate increase in mortality associated with temperatures exceeding the 75th percentile of summer maximum temperatures, corresponding to approximately 23°C. This increase lasted for a couple of days in both regions. The total effect of elevated temperatures was not lessened by significant mortality displacement. Discussion We observed significantly increased mortality in Estonia, both on a country level as well as for a coastal region and an inland region with a more continental climate. Heat related mortality was higher in the inland region as compared to the coastal region, however, no statistically significant differences were observed. The lower risks in coastal areas could be due to lower maximum temperatures and cooling effects of the sea, but also better socioeconomic condition. Our results suggest that region specific estimates of the impacts of temperature extremes on mortality are needed.
Current Environmental Health Reports | 2017
Hans Orru; Kristie L. Ebi; Bertil Forsberg
Purpose of ReviewAir pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research.Recent FindingsSeveral studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions.SummaryThis review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.
The Open Respiratory Medicine Journal | 2016
Mihkel Pindus; Hans Orru; Marek Maasikmets; Marko Kaasik; Rain Jögi
Background: Traffic and residential heating are the main sources of particulate matter (PM) in Northern Europe. Wood is widely used for residential heating and vehicle numbers are increasing. Besides traffic exhaust, studded tires produce road dust that is the main source of traffic-related PM10. Several studies have associated total PM mass with health symptoms; however there has been little research on the effects of PM from specific sources. Objective: To study the health effects resulting from traffic and local heating PM. Methods: Data on respiratory and cardiac diseases were collected within the framework of RHINE III (2011/2012) in Tartu, Estonia. Respondents’ geocoded home addresses were mapped in ArcGIS and linked with local heating-related PM2.5, traffic-related PM10 and total PM2.5 concentrations. Association between self-reported health and PM was assessed using multiple logistic regression analysis. Results: The annual mean modelled exposure for local heating PM2.5 was 2.3 μg/m3, for traffic PM10 3.3 μg/m3 and for all sources PM2.5 5.6 μg/m3. We found relationship between traffic induced PM10 as well as all sources induced PM2.5 with cardiac disease, OR=1.45 (95% CI 1.06−1.93) and 1.42 (95% CI 1.02−1.95), respectively. However, we did not find any significant association between residential heating induced particles and self-reported health symptoms. People with longer and better confirmed exposure period were also significantly associated with traffic induced PM10, all sources induced PM2.5 and cardiac diseases. Conclusion: Traffic-related PM10 and all sources induced PM2.5 associated with cardiac disease; whereas residential heating induced particles did not.