Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans R. Waterham is active.

Publication


Featured researches published by Hans R. Waterham.


Nature Genetics | 1999

Mutations in MVK, encoding mevalonate kinase, cause hyperimmunoglobulinaemia D and periodic fever syndrome

Sander M. Houten; W. Kuis; M. Duran; T J de Koning; A. Van Royen-Kerkhof; Gerrit Jan Romeijn; Joost Frenkel; L. Dorland; M. de Barse; W. A. R. Huijbers; Ger T. Rijkers; Hans R. Waterham; R. J. A. Wanders; B. T. Poll-The

Hyperimmunoglobulinaemia D and periodic fever syndrome (HIDS; MIM 260920) is an autosomal recessive disorder characterized by recurrent episodes of fever associated with lymphadenopathy, arthralgia, gastrointestinal dismay and skin rash. Diagnostic hallmark of HIDS is a constitutively elevated level of serum immunoglobulin D (IgD), although patients have been reported with normal IgD levels. To determine the underlying defect in HIDS, we analysed urine of several patients and discovered increased concentrations of mevalonic acid during severe episodes of fever, but not between crises. Subsequent analysis of cells from four unrelated HIDS patients revealed reduced activities of mevalonate kinase (MK; encoded by the gene MVK), a key enzyme of isoprenoid biosynthesis. Sequence analysis of MVK cDNA from the patients identified three different mutations, one of which was common to all patients. Expression of the mutant cDNAs in Escherichia coli showed that all three mutations affect the activity of the encoded proteins. Moreover, immunoblot analysis demonstrated a deficiency of MK protein in patient fibroblasts, indicating a protein-destabilizing effect of the mutations.


American Journal of Human Genetics | 2001

Mutations in the 3β-hydroxysterol Δ24-reductase gene cause desmosterolosis, an autosomal recessive disorder of cholesterol biosynthesis

Hans R. Waterham; Janet Koster; Gerrit Jan Romeijn; Raoul C. M. Hennekam; Peter Vreken; Hans C. Andersson; David Fitzpatrick; Richard I. Kelley

Desmosterolosis is a rare autosomal recessive disorder characterized by multiple congenital anomalies. Patients with desmosterolosis have elevated levels of the cholesterol precursor desmosterol, in plasma, tissue, and cultured cells; this abnormality suggests a deficiency of the enzyme 3β-hydroxysterol Δ24-reductase (DHCR24), which, in cholesterol biosynthesis, catalyzes the reduction of the Δ24 double bond of sterol intermediates. We identified the human DHCR24 cDNA, by the similarity between the encoded protein and a recently characterized plant enzyme—DWF1/DIM, from Arabidopsis thaliana—catalyzing a different but partially similar reaction in steroid/sterol biosynthesis in plants. Heterologous expression, in the yeast Saccharomyces cerevisiae, of the DHCR24 cDNA, followed by enzyme-activity measurements, confirmed that it encodes DHCR24. The encoded DHCR24 protein has a calculated molecular weight of 60.1 kD, contains a potential N-terminal secretory-signal sequence as well as at least one putative transmembrane helix, and is a member of a recently defined family of flavin adenine dinucleotide (FAD)–dependent oxidoreductases. Conversion of desmosterol to cholesterol by DHCR24 in vitro is strictly dependent on reduced nicotinamide adenine dinucleotide phosphate and is increased twofold by the addition of FAD to the assay. The corresponding gene, DHCR24, was identified by database searching, spans ∼46.4 kb, is localized to chromosome 1p31.1-p33, and comprises nine exons and eight introns. Sequence analysis of DHCR24 in two patients with desmosterolosis revealed four different missense mutations, which were shown, by functional expression, in yeast, of the patient alleles, to be disease causing. Our data demonstrate that desmosterolosis is a cholesterol-biosynthesis disorder caused by mutations in DHCR24.


American Journal of Human Genetics | 2003

Autosomal recessive HEM/greenberg skeletal dysplasia is caused by 3β-hydroxysterol Δ14-reductase deficiency due to mutations in the lamin B receptor gene

Hans R. Waterham; Janet Koster; Petra Mooyer; Gerard van Noort; Richard I. Kelley; William R. Wilcox; J.A. Ronald Wanders; Raoul C. M. Hennekam; C. Jan Oosterwijk

Hydrops-ectopic calcification-“moth-eaten” (HEM) or Greenberg skeletal dysplasia is an autosomal recessive chondrodystrophy with a lethal course, characterized by fetal hydrops, short limbs, and abnormal chondro-osseous calcification. We found elevated levels of cholesta-8,14-dien-3β-ol in cultured skin fibroblasts of an 18-wk-old fetus with HEM, compatible with a deficiency of the cholesterol biosynthetic enzyme 3β-hydroxysterol Δ14-reductase. Sequence analysis of two candidate genes encoding putative human sterol Δ14-reductases (TM7SF2 and LBR) identified a homozygous 1599–1605TCTTCTA→CTAGAAG substitution in exon 13 of the LBR gene encoding the lamin B receptor, which results in a truncated protein. Functional complementation of the HEM cells by transfection with control LBR cDNA confirmed that LBR encoded the defective sterol Δ14-reductase. Mutations in LBR recently have been reported also to cause Pelger-Huet anomaly, an autosomal dominant trait characterized by hypolobulated nuclei and abnormal chromatin structure in granulocytes. The fact that the healthy mother of the fetus showed hypolobulated nuclei in 60% of her granulocytes confirms that classic Pelger-Huet anomaly represents the heterozygous state of 3β-hydroxysterol Δ14-reductase deficiency.


Human Mutation | 2008

The infevers autoinflammatory mutation online registry: update with new genes and functions.

Florian Milhavet; Laurence Cuisset; Hal M. Hoffman; Rima Slim; Hatem El-Shanti; Ivona Aksentijevich; Suzanne Lesage; Hans R. Waterham; Carol A. Wise; Cyril Sarrauste de Menthière; Isabelle Touitou

Infevers (Internet Fevers; http://fmf.igh.cnrs.fr/ISSAID/infevers), a website dedicated to mutations responsible for hereditary autoinflammatory diseases, was created in 2002 and has continued to evolve. This new version includes eight genes; six were already present: MEFV, MVK, TNFRSF1A, NLRP3, NOD2, PSTPIP1, and two are new, LPIN2 and NLRP7. Currently, Infevers contains over 540 sequence variants. Several new database functions were recently instituted. The website now accepts confidential data and complex alleles. For each gene, a newly created menu offers: 1) a tabular list of the variants that can be sorted by several parameters; 2) a gene graph providing a schematic representation of the variants along the gene; 3) statistical analysis of the data according to the phenotype, alteration type, and location of the mutation in the gene; 4) the cDNA and gDNA sequences of each gene, showing the nucleotide changes along the sequence, with a color‐based code highlighting the gene domains, the first ATG, and the termination codon; and 5) a “download” menu making all tables and figures available for the users, which, except for the gene graphs, are all automatically generated and updated upon submission of the variants. Finally, the entire database was curated to comply with the HUGO Gene Nomenclature Committee (HGNC) and HGVS nomenclature guidelines, and wherever necessary, an informative note was provided. Infevers has already proven useful for the scientific community with a mean number of visits per month of 200 in 2002 and 800 in 2007, and its new design will lead to a more comprehensive comparative analysis and interpretation of auto‐inflammatory sequence variants. Hum Mutat 29(6), 803–808, 2008. Published 2008, Wiley‐Liss, Inc.


Molecular & Cellular Proteomics | 2007

Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling.

Sebastian Wiese; Rob Ofman; Markus Kunze; Cláudia P. Grou; José A. Almeida; Martin Eisenacher; Christian Stephan; Heiko Hayen; Lukas Schollenberger; Thomas Korosec; Hans R. Waterham; Wolfgang Schliebs; Ralf Erdmann; Johannes Berger; Helmut E. Meyer; Wilhelm W. Just; Jorge E. Azevedo; Bettina Warscheid

The peroxisome represents a ubiquitous single membrane-bound key organelle that executes various metabolic pathways such as fatty acid degradation by α- and β-oxidation, ether-phospholipid biosynthesis, metabolism of reactive oxygen species, and detoxification of glyoxylate in mammals. To fulfil this vast array of metabolic functions, peroxisomes accommodate ∼50 different enzymes at least as identified until now. Interest in peroxisomes has been fueled by the discovery of a group of genetic diseases in humans, which are caused by either a defect in peroxisome biogenesis or the deficient activity of a distinct peroxisomal enzyme or transporter. Although this research has greatly improved our understanding of peroxisomes and their role in mammalian metabolism, deeper insight into biochemistry and functions of peroxisomes is required to expand our knowledge of this low abundance but vital organelle. In this work, we used classical subcellular fractionation in combination with MS-based proteomics methodologies to characterize the proteome of mouse kidney peroxisomes. We could identify virtually all known components involved in peroxisomal metabolism and biogenesis. Moreover through protein localization studies by using a quantitative MS screen combined with statistical analyses, we identified 15 new peroxisomal candidates. Of these, we further investigated five candidates by immunocytochemistry, which confirmed their localization in peroxisomes. As a result of this joint effort, we believe to have compiled the so far most comprehensive protein catalogue of mammalian peroxisomes.


The FASEB Journal | 2008

The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl-CoA esters

Carlo W.T. van Roermund; Wouter F. Visser; Lodewijk IJlst; Arno van Cruchten; Maxim Boek; Wim Kulik; Hans R. Waterham

Peroxisomes play a major role in human cellular lipid metabolism, including the β‐oxidation of fatty acids. The most frequent peroxisomal disorder is X‐linked adrenoleukodystrophy (X‐ALD), which is caused by mutations in the ABCD1 gene. The protein involved, called ABCD1, or alternatively ALDP, is a member of the ATP‐binding‐cassette (ABC) transporter family and is located in the peroxisomal membrane. The biochemical hallmark of X‐ALD is the accumulation of very long‐chain fatty acids (VLCFAs), due to an im paired peroxisomal β‐oxidation. Although this suggests a role of ALDP in VLCFA import, no experimental evidence is available to substantiate this. In the yeast Saccharomyces cerevisiae, peroxisomes are the exclusive site of fatty acid β‐oxidation. Earlier work has shown that uptake of fatty acids into peroxisomes may occur via two routes, either as free fatty acids thus requiring intraperoxisomal activation into acyl‐CoA esters or as long‐chain acyl‐CoA esters. The latter route involves the two peroxisomal half ABC transporters Pxalp and Pxa2p that form a heterodimeric complex in the perox isomal membrane. Using different strategies, including the analysis of intracellular acyl‐CoA esters by tandem‐MS, we show that the Pxa1p/Pxa2p heterodimer is involved in the transport of a spectrum of acyl‐CoA esters. Interestingly, we found that the mutant phenotype of the pxa1/pxa2Δ mutant can be rescued, at least par tially, by the sole expression of the human ABCD1 cDNA coding for ALDP, the protein that is defective in the human disease X‐linked adrenoleukodystrophy. Our data indicate that ALDP can function as a ho modimer and is involved in the transport of acyl‐CoA esters across the peroxisomal membrane.— van Roer mund, C. W. T., Visser, W. F., IJlst, L., van Cruchten, A., Boek, M., Kulik, W., Waterham, H. R., Wanders, R. J. A. The human peroxisomal ABC half transporter ALDP functions as a homodimer and accepts acyl–CoA esters. FASEB J. 22, 4201–4208 (2008)


Biochimica et Biophysica Acta | 2012

Genetics and molecular basis of human peroxisome biogenesis disorders

Hans R. Waterham; Merel S. Ebberink

Human peroxisome biogenesis disorders (PBDs) are a heterogeneous group of autosomal recessive disorders comprised of two clinically distinct subtypes: the Zellweger syndrome spectrum (ZSS) disorders and rhizomelic chondrodysplasia punctata (RCDP) type 1. PBDs are caused by defects in any of at least 14 different PEX genes, which encode proteins involved in peroxisome assembly and proliferation. Thirteen of these genes are associated with ZSS disorders. The genetic heterogeneity among PBDs and the inability to predict from the biochemical and clinical phenotype of a patient with ZSS which of the currently known 13 PEX genes is defective, has fostered the development of different strategies to identify the causative gene defects. These include PEX cDNA transfection complementation assays followed by sequencing of the thus identified PEX genes, and a PEX gene screen in which the most frequently mutated exons of the different PEX genes are analyzed. The benefits of DNA testing for PBDs include carrier testing of relatives, early prenatal testing or preimplantation genetic diagnosis in families with a recurrence risk for ZSS disorders, and insight in genotype-phenotype correlations, which may eventually assist to improve patient management. In this review we describe the current status of genetic analysis and the molecular basis of PBDs.


American Journal of Human Genetics | 2003

Identification of PEX7 as the Second Gene Involved in Refsum Disease

Daan M. van den Brink; Pedro Brites; Janet Haasjes; Anthony S. Wierzbicki; John Mitchell; Michelle Lambert-Hamill; Jacqueline de Belleroche; Gerbert A. Jansen; Hans R. Waterham; J.A. Ronald Wanders

Patients affected with Refsum disease (RD) have elevated levels of phytanic acid due to a deficiency of the peroxisomal enzyme phytanoyl-CoA hydroxylase (PhyH). In most patients with RD, disease-causing mutations in the PHYH gene have been identified, but, in a subset, no mutations could be found, indicating that the condition is genetically heterogeneous. Linkage analysis of a few patients diagnosed with RD, but without mutations in PHYH, suggested a second locus on chromosome 6q22-24. This region includes the PEX7 gene, which codes for the peroxin 7 receptor protein required for peroxisomal import of proteins containing a peroxisomal targeting signal type 2. Mutations in PEX7 normally cause rhizomelic chondrodysplasia punctata type 1, a severe peroxisomal disorder. Biochemical analyses of the patients with RD revealed defects not only in phytanic acid α-oxidation but also in plasmalogen synthesis and peroxisomal thiolase. Furthermore, we identified mutations in the PEX7 gene. Our data show that mutations in the PEX7 gene may result in a broad clinical spectrum ranging from severe rhizomelic chondrodysplasia punctata to relatively mild RD and that clinical diagnosis of conditions involving retinitis pigmentosa, ataxia, and polyneuropathy may require a full screen of peroxisomal functions.


Journal of Inherited Metabolic Disease | 2011

Brown-Vialetto-Van Laere and Fazio Londe syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn error of metabolism with potential treatment

Annet M. Bosch; Nico G. G. M. Abeling; Lodewijk IJlst; Hennie Knoester; W. Ludo van der Pol; Alida E. M. Stroomer; Gepke Visser; Frits A. Wijburg; M. Duran; Hans R. Waterham

We report on three patients (two siblings and one unrelated) presenting in infancy with progressive muscle weakness and paralysis of the diaphragm. Metabolic studies revealed a profile of plasma acylcarnitines and urine organic acids suggestive of a mild form of the multiple acyl-CoA dehydrogenation defect (MADD, ethylmalonic/adipic acid syndrome). Subsequently, a profound flavin deficiency in spite of a normal dietary riboflavin intake was established in the plasma of all three children, suggesting a riboflavin transporter defect. Genetic analysis of these patients demonstrated mutations in the C20orf54 gene which encodes the human homolog of a rat riboflavin transporter. This gene was recently implicated in the Brown-Vialetto-Van Laere syndrome, a rare neurological disorder which may either present in infancy with neurological deterioration with hypotonia, respiratory insufficiency and early death, or later in life with deafness and progressive ponto-bulbar palsy. Supplementation of riboflavin rapidly improved the clinical symptoms as well as the biochemical abnormalities in our patients, demonstrating that high dose riboflavin is a potential treatment for the Brown-Vialetto-Van Laere syndrome as well as for the Fazio Londe syndrome which is considered to be the same disease entity without the deafness.


Biochemical Journal | 2007

Metabolite transport across the peroxisomal membrane

Wouter F. Visser; Carlo W.T. van Roermund; Lodewijk IJlst; Hans R. Waterham

In recent years, much progress has been made with respect to the unravelling of the functions of peroxisomes in metabolism, and it is now well established that peroxisomes are indispensable organelles, especially in higher eukaryotes. Peroxisomes catalyse a number of essential metabolic functions including fatty acid beta-oxidation, ether phospholipid biosynthesis, fatty acid alpha-oxidation and glyoxylate detoxification. The involvement of peroxisomes in these metabolic pathways necessitates the transport of metabolites in and out of peroxisomes. Recently, considerable progress has been made in the characterization of metabolite transport across the peroxisomal membrane. Peroxisomes posses several specialized transport systems to transport metabolites. This is exemplified by the identification of a specific transporter for adenine nucleotides and several half-ABC (ATP-binding cassette) transporters which may be present as hetero- and homo-dimers. The nature of the substrates handled by the different ABC transporters is less clear. In this review we will describe the current state of knowledge of the permeability properties of the peroxisomal membrane.

Collaboration


Dive into the Hans R. Waterham's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Duran

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar

Janet Koster

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sander M. Houten

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frits A. Wijburg

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge