Hans Reimer Rodewald
University of Ulm
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans Reimer Rodewald.
Nature | 2015
Elisa Gomez Perdiguero; Kay Klapproth; Christian Schulz; Katrin Busch; Emanuele Azzoni; Lucile Crozet; Hannah Garner; Céline Trouillet; Marella de Bruijn; Frederic Geissmann; Hans Reimer Rodewald
Most haematopoietic cells renew from adult haematopoietic stem cells (HSCs), however, macrophages in adult tissues can self-maintain independently of HSCs. Progenitors with macrophage potential in vitro have been described in the yolk sac before emergence of HSCs, and fetal macrophages can develop independently of Myb, a transcription factor required for HSC, and can persist in adult tissues. Nevertheless, the origin of adult macrophages and the qualitative and quantitative contributions of HSC and putative non-HSC-derived progenitors are still unclear. Here we show in mice that the vast majority of adult tissue-resident macrophages in liver (Kupffer cells), brain (microglia), epidermis (Langerhans cells) and lung (alveolar macrophages) originate from a Tie2+ (also known as Tek) cellular pathway generating Csf1r+ erythro-myeloid progenitors (EMPs) distinct from HSCs. EMPs develop in the yolk sac at embryonic day (E) 8.5, migrate and colonize the nascent fetal liver before E10.5, and give rise to fetal erythrocytes, macrophages, granulocytes and monocytes until at least E16.5. Subsequently, HSC-derived cells replace erythrocytes, granulocytes and monocytes. Kupffer cells, microglia and Langerhans cells are only marginally replaced in one-year-old mice, whereas alveolar macrophages may be progressively replaced in ageing mice. Our fate-mapping experiments identify, in the fetal liver, a sequence of yolk sac EMP-derived and HSC-derived haematopoiesis, and identify yolk sac EMPs as a common origin for tissue macrophages.
Nature | 2015
Katrin Busch; Kay Klapproth; Melania Barile; Michael Flossdorf; Susan M. Schlenner; Michael Reth; Thomas Höfer; Hans Reimer Rodewald
Haematopoietic stem cells (HSCs) are widely studied by HSC transplantation into immune- and blood-cell-depleted recipients. Single HSCs can rebuild the system after transplantation. Chromosomal marking, viral integration and barcoding of transplanted HSCs suggest that very low numbers of HSCs perpetuate a continuous stream of differentiating cells. However, the numbers of productive HSCs during normal haematopoiesis, and the flux of differentiating progeny remain unknown. Here we devise a mouse model allowing inducible genetic labelling of the most primitive Tie2+ HSCs in bone marrow, and quantify label progression along haematopoietic development by limiting dilution analysis and data-driven modelling. During maintenance of the haematopoietic system, at least 30% or ∼5,000 HSCs are productive in the adult mouse after label induction. However, the time to approach equilibrium between labelled HSCs and their progeny is surprisingly long, a time scale that would exceed the mouse’s life. Indeed, we find that adult haematopoiesis is largely sustained by previously designated ‘short-term’ stem cells downstream of HSCs that nearly fully self-renew, and receive rare but polyclonal HSC input. By contrast, in fetal and early postnatal life, HSCs are rapidly used to establish the immune and blood system. In the adult mouse, 5-fluoruracil-induced leukopenia enhances the output of HSCs and of downstream compartments, thus accelerating haematopoietic flux. Label tracing also identifies a strong lineage bias in adult mice, with several-hundred-fold larger myeloid than lymphoid output, which is only marginally accentuated with age. Finally, we show that transplantation imposes severe constraints on HSC engraftment, consistent with the previously observed oligoclonal HSC activity under these conditions. Thus, we uncover fundamental differences between the normal maintenance of the haematopoietic system, its regulation by challenge, and its re-establishment after transplantation. HSC fate mapping and its linked modelling provide a quantitative framework for studying in situ the regulation of haematopoiesis in health and disease.
Immunity | 2010
Susan M. Schlenner; Vikas Madan; Katrin Busch; Annette Tietz; Carolin Läufle; Celine Costa; Carmen Blum; Hans Jörg Fehling; Hans Reimer Rodewald
The cellular differentiation pathway originating from the bone marrow leading to early T lymphocytes remains poorly understood. The view that T cells branch off from a lymphoid-restricted pathway has recently been challenged by a model proposing a common progenitor for T cell and myeloid lineages. We generated interleukin-7 receptor alpha (Il7r) Cre recombinase knockin mice and traced lymphocyte development by visualizing the history of Il7r expression. Il7r fate mapping labeled all T cells but few myeloid cells. More than 85% of T cell progenitors were Il7r reporter(+) and, hence, had arisen from an Il7r-expressing pathway. In contrast, the overwhelming majority of myeloid cells in the thymus were derived from Il7r reporter(-) cells. Thus, lymphoid-restricted progenitors are the major route to T cells, and distinct origins of lymphoid and myeloid lineages represent a fundamental hallmark of hematopoiesis.
Nature | 2001
Hans Reimer Rodewald; Sabine Paul; Corinne Haller; Horst Bluethmann; Carmen Blum
The thymus is organized into medullary and cortical zones that support distinct stages of T-cell development. The formation of medulla and cortex compartments is thought to occur through invagination of an endodermal epithelial sheet into an ectodermal one at the third pharyngeal pouch and cleft, respectively. Epithelial stem/progenitor cells have been proposed to be involved in thymus development, but evidence for their existence has been elusive. We have constructed chimaeric mice by injecting embryonic stem (ES) cells into blastocysts using ES cells and blastocysts differing in their major histocompatibility complex (MHC) type. Here we show that the MHC class-II-positive medullary epithelium in these chimaeras is composed of cell clusters, most of which derive from either embryonic stem cell or blastocyst, but not mixed, origin. Thus, the medulla comprises individual epithelial ‘islets’ each arising from a single progenitor. One thymic lobe has about 300 medullary areas that originate from as few as 900 progenitors. Islet formation can be recapitulated after implantation of ‘reaggregated fetal thymic organs’ into mice, which shows that medullary ‘stem’ cells retain their potential until at least day 16.5 in fetal development. Thus, medulla–cortex compartmentalization is established by formation of medullary islets from single progenitors.
Journal of Experimental Medicine | 2014
Kaaweh Molawi; Yochai Wolf; Prashanth K. Kandalla; Jeremy Favret; Nora Hagemeyer; Kathrin Frenzel; Alexander R. Pinto; Kay Klapproth; Sandrine Henri; Bernard Malissen; Hans Reimer Rodewald; Nadia Rosenthal; Marc Bajénoff; Marco Prinz; Steffen Jung; Michael H. Sieweke
Molawi et al. examine the origin and cellular dynamics of macrophages in the heart during postnatal development. Cardiac macrophages derived from CX3CR1+ embryonic progenitors persist into adulthood, but the contribution of these cells to resident macrophages declines after birth with diminished self-renewal as the mice age. Over time, the heart is progressively reconstituted with bone marrow–derived macrophages, even in the absence of inflammation.
Current Opinion in Immunology | 1998
James P. Di Santo; Hans Reimer Rodewald
The early phases of T-cell development require both cell-cell interactions and soluble factors provided by stromal cells within the thymic microenvironment. Still, the precise nature of the signals delivered in vivo by cytokines (resulting in survival, proliferation or differentiation) remains unclear. Recent studies using mice deficient in cytokines or in their receptors have helped to identify essential signaling pathways required for the development of intrathymic precursors to mature alpha beta and gamma delta T cells. In addition, cytokine requirements for the development of natural killer cells were revealed in such mutants. The results obtained demonstrate that the development of all classes of lymphocytes (natural killer, gamma delta T cells and alpha beta T cells) is cytokine dependent, but the specific requirements differ for each lineage.
Immunity | 2009
Thorsten B. Feyerabend; Grzegorz Terszowski; Annette Tietz; Carmen Blum; Hervé Luche; Achim Gossler; Nicholas W. Gale; Freddy Radtke; Hans Jörg Fehling; Hans Reimer Rodewald
Notch1 signaling is required for T cell development and has been implicated in fate decisions in the thymus. We showed that Notch1 deletion in progenitor T cells (pro-T cells) revealed their latent developmental potential toward becoming conventional and plasmacytoid dendritic cells. In addition, Notch1 deletion in pro-T cells resulted in large numbers of thymic B cells, previously explained by T-to-B cell fate conversion. Single-cell genotyping showed, however, that the majority of these thymic B cells arose from Notch1-sufficient cells by a cell-extrinsic pathway. Fate switching nevertheless exists for a subset of thymic B cells originating from Notch1-deleted pro-T cells. Chimeric mice lacking the Notch ligand delta-like 4 (Dll4) in thymus epithelium revealed an essential role for Dll4 in T cell development. Thus, Notch1-Dll4 signaling fortifies T cell commitment by suppressing non-T cell lineage potential in pro-T cells, and normal Notch1-driven T cell development repels excessive B cells in the thymus.
Nature Immunology | 2008
Philipp Mueller; Jan Massner; Rajesh Jayachandran; Benoit Combaluzier; Imke Albrecht; John Gatfield; Carmen Blum; Rod Ceredig; Hans Reimer Rodewald; Antonius Rolink; Jean Pieters
T cell homeostasis is essential for the functioning of the vertebrate immune system, but the intracellular signals required for T cell homeostasis are largely unknown. We here report that the WD-repeat protein family member coronin-1, encoded by the gene Coro1a, is essential in the mouse for T cell survival through its promotion of Ca2+ mobilization from intracellular stores. Upon T cell receptor triggering, coronin-1 was essential for the generation of inositol-1,4,5-trisphosphate from phosphatidylinositol-4,5-bisphosphate. The absence of coronin-1, although it did not affect T cell development, resulted in a profound defect in Ca2+ mobilization, interleukin-2 production, T cell proliferation and T cell survival. We conclude that coronin-1, through activation of Ca2+ release from intracellular stores, is an essential regulator of peripheral lymphocyte survival.
Journal of Experimental Medicine | 2007
Lars Alexander Schneider; Susan M. Schlenner; Thorsten B. Feyerabend; Markus Wunderlin; Hans Reimer Rodewald
Mast cells are protective against snake venom sarafotoxins that belong to the endothelin (ET) peptide family. The molecular mechanism underlying this recently recognized innate defense pathway is unknown, but secretory granule proteases have been invoked. To specifically disrupt a single protease function without affecting expression of other proteases, we have generated a mouse mutant selectively lacking mast cell carboxypeptidase A (Mc-cpa) activity. Using this mutant, we have now identified Mc-cpa as the essential protective mast cell enzyme. Mass spectrometry of peptide substrates after cleavage by normal or mutant mast cells showed that removal of a single amino acid, the C-terminal tryptophan, from ET and sarafotoxin by Mc-cpa is the principle molecular mechanism underlying this very rapid mast cell response. Mast cell proteases can also cleave ET and sarafotoxin internally, but such “nicking” is not protective because intramolecular disulfide bridges maintain peptide function. We conclude that mast cells attack ET and sarafotoxin exactly at the structure required for toxicity, and hence sarafotoxins could not “evade” Mc-cpas substrate specificity without loss of toxicity.
Nature | 2014
Vera C. Martins; Katrin Busch; Dilafruz Juraeva; Carmen Blum; Carolin Ludwig; Volker Rasche; Felix Lasitschka; Sergey E. Mastitsky; Benedikt Brors; Thomas Hielscher; Hans Joerg Fehling; Hans Reimer Rodewald
Cell competition is an emerging principle underlying selection for cellular fitness during development and disease. Competition may be relevant for cancer, but an experimental link between defects in competition and tumorigenesis is elusive. In the thymus, T lymphocytes develop from precursors that are constantly replaced by bone-marrow-derived progenitors. Here we show that in mice this turnover is regulated by natural cell competition between ‘young’ bone-marrow-derived and ‘old’ thymus-resident progenitors that, although genetically identical, execute differential gene expression programs. Disruption of cell competition leads to progenitor self-renewal, upregulation of Hmga1, transformation, and T-cell acute lymphoblastic leukaemia (T-ALL) resembling the human disease in pathology, genomic lesions, leukaemia-associated transcripts, and activating mutations in Notch1. Hence, cell competition is a tumour suppressor mechanism in the thymus. Failure to select fit progenitors through cell competition may explain leukaemia in X-linked severe combined immune deficiency patients who showed thymus-autonomous T-cell development after therapy with gene-corrected autologous progenitors.