Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans-Reinhard Hofferbert is active.

Publication


Featured researches published by Hans-Reinhard Hofferbert.


Genetics | 2009

Single Nucleotide Polymorphisms in the Allene Oxide Synthase 2 Gene Are Associated With Field Resistance to Late Blight in Populations of Tetraploid Potato Cultivars

Karolina M. Pajerowska-Mukhtar; Benjamin Stich; Ute Achenbach; Agim Ballvora; Jens Lübeck; Josef Strahwald; Eckhard Tacke; Hans-Reinhard Hofferbert; Evgeniya Ilarionova; Diana Bellin; Birgit Walkemeier; Rico Basekow; Birgit Kersten; Christiane Gebhardt

The oomycete Phytophthora infestans causes late blight, the most relevant disease of potato (Solanum tuberosum) worldwide. Field resistance to late blight is a complex trait. When potatoes are cultivated under long day conditions in temperate climates, this resistance is correlated with late plant maturity, an undesirable characteristic. Identification of natural gene variation underlying late blight resistance not compromised by late maturity will facilitate the selection of resistant cultivars and give new insight in the mechanisms controlling quantitative pathogen resistance. We tested 24 candidate loci for association with field resistance to late blight and plant maturity in a population of 184 tetraploid potato individuals. The individuals were genotyped for 230 single nucleotide polymorphisms (SNPs) and 166 microsatellite alleles. For association analysis we used a mixed model, taking into account population structure, kinship, allele substitution and interaction effects of the marker alleles at a locus with four allele doses. Nine SNPs were associated with maturity corrected resistance (P < 0.001), which collectively explained 50% of the genetic variance of this trait. A major association was found at the StAOS2 locus encoding allene oxide synthase 2, a key enzyme in the biosynthesis of jasmonates, plant hormones that function in defense signaling. This finding supports StAOS2 as being one of the factors controlling natural variation of pathogen resistance.


Molecular Breeding | 2006

Single nucleotide polymorphism (SNP) genotyping as basis for developing a PCR-based marker highly diagnostic for potato varieties with high resistance to Globodera pallida pathotype Pa2/3

Amirali Sattarzadeh; Ute Achenbach; Jens Lübeck; Josef Strahwald; Eckhard Tacke; Hans-Reinhard Hofferbert; Tamara Rothsteyn; Christiane Gebhardt

Globodera pallida is a parasitic root cyst nematode of potato, which causes reduction of crop yield and quality in infested fields. Field populations of G. pallida containing mixtures of pathotypes Pa2 and Pa3 (Pa2/3) are currently most relevant for potato cultivation in middle Europe. Genes for resistance to G. pallida have been introgressed into the cultivated potato gene pool from the wild, tuber bearing Solanum species S. spegazzinii and S. vernei. Selection of resistant genotypes in breeding programs is hampered by the fact that the phenotypic evaluation of resistance to G. pallida is time consuming, costly and often ambiguous. DNA-based markers diagnostic for resistance to G. pallida would facilitate the development of resistant varieties. A tetraploid F1 hybrid family SR-Gpa segregating for quantitative resistance to G.␣pallida was developed and evaluated for resistance to G. pallida population ‘Chavornay’. Two subpopulations of 30 highly resistant and 30 susceptible individuals were selected and genotyped for 96 single nucleotide polymorphism (SNP) markers tagging 12 genomic regions on 10 potato chromosomes. Seven SNPs were found significantly linked to the nematode resistance, which were all located within a resistance ‘hotspot’ on potato chromosome V. A haplotype model for these seven SNPs was deduced from the SNP patterns observed in the SR-Gpa family. A PCR assay ‘HC’ was developed, which specifically detected the SNP haplotype c that was linked with high levels of nematode resistance. The HC marker was only found in accessions of S.␣vernei. Screening with the HC marker 34 potato varieties resistant to G. pallida pathotypes Pa2 and/or Pa3 and 22 susceptible varieties demonstrated that the HC marker was highly diagnostic for presence of high levels of resistance to G. pallida pathotype Pa2/Pa3.


BMC Plant Biology | 2013

Novel candidate genes influencing natural variation in potato tuber cold sweetening identified by comparative proteomics and association mapping

Matthias Fischer; Lena Schreiber; Thomas Colby; Markus Kuckenberg; Eckhard Tacke; Hans-Reinhard Hofferbert; Jürgen Schmidt; Christiane Gebhardt

BackgroundHigher plants evolved various strategies to adapt to chilling conditions. Among other transcriptional and metabolic responses to cold temperatures plants accumulate a range of solutes including sugars. The accumulation of the reducing sugars glucose and fructose in mature potato tubers during exposure to cold temperatures is referred to as cold induced sweetening (CIS). The molecular basis of CIS in potato tubers is of interest not only in basic research on plant adaptation to environmental stress but also in applied research, since high amounts of reducing sugars affect negatively the quality of processed food products such as potato chips. CIS-tolerance varies considerably among potato cultivars. Our objective was to identify by an unbiased approach genes and cellular processes influencing natural variation of tuber sugar content before and during cold storage in potato cultivars used in breeding programs. We compared by two-dimensional polyacrylamide gel electrophoresis the tuber proteomes of cultivars highly diverse for CIS. DNA polymorphisms in genomic sequences encoding differentially expressed proteins were tested for association with tuber starch content, starch yield and processing quality.ResultsPronounced natural variation of CIS was detected in tubers of a population of 40 tetraploid potato cultivars. Significant differences in protein expression were detected between CIS-tolerant and CIS-sensitive cultivars before the onset as well as during cold storage. Identifiable differential proteins corresponded to protease inhibitors, patatins, heat shock proteins, lipoxygenase, phospholipase A1 and leucine aminopeptidase (Lap). Association mapping based on single nucleotide polymorphisms supported a role of Lap in the natural variation of the quantitative traits tuber starch and sugar content.ConclusionsThe combination of comparative proteomics and association genetics led to the discovery of novel candidate genes for influencing the natural variation of quantitative traits in potato tubers. One such gene was a leucine aminopeptidase not considered so far to play a role in starch sugar interconversion. Novel SNP’s diagnostic for increased tuber starch content, starch yield and chip quality were identified, which are useful for selecting improved potato processing cultivars.


Theoretical and Applied Genetics | 2011

Multiple alleles for resistance and susceptibility modulate the defense response in the interaction of tetraploid potato (Solanum tuberosum) with Synchytrium endobioticum pathotypes 1, 2, 6 and 18

Agim Ballvora; Kerstin Flath; Jens Lübeck; Josef Strahwald; Eckhard Tacke; Hans-Reinhard Hofferbert; Christiane Gebhardt

The obligate biotrophic, soil-borne fungus Synchytrium endobioticum causes wart disease of potato (Solanum tuberosum), which is a serious problem for crop production in countries with moderate climates. S. endobioticum induces hypertrophic cell divisions in plant host tissues leading to the formation of tumor-like structures. Potato wart is a quarantine disease and chemical control is not possible. From 38 S. endobioticum pathotypes occurring in Europe, pathotypes 1, 2, 6 and 18 are the most relevant. Genetic resistance to wart is available but only few current potato varieties are resistant to all four pathotypes. The phenotypic evaluation of wart resistance is laborious, time-consuming and sometimes ambiguous, which makes breeding for resistance difficult. Molecular markers diagnostic for genes for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 would greatly facilitate the selection of new, resistant cultivars. Two tetraploid half-sib families (266 individuals) segregating for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 were produced by crossing a resistant genotype with two different susceptible ones. The families were scored for five different wart resistance phenotypes. The distribution of mean resistance scores was quantitative in both families. Resistance to pathotypes 2, 6 and 18 was correlated and independent from resistance to pathotype 1. DNA pools were constructed from the most resistant and most susceptible individuals and screened with genome wide simple sequence repeat (SSR), inverted simple sequence region (ISSR) and randomly amplified polymorphic DNA (RAPD) markers. Bulked segregant analysis identified three SSR markers that were linked to wart resistance loci (Sen). Sen1-XI on chromosome XI conferred partial resistance to pathotype 1, Sen18-IX on chromosome IX to pathotype 18 and Sen2/6/18-I on chromosome I to pathotypes 2,6 and 18. Additional genotyping with 191 single nucleotide polymorphism (SNP) markers confirmed the localization of the Sen loci. Thirty-three SNP markers linked to the Sen loci permitted the dissection of Sen alleles that increased or decreased resistance to wart. The alleles were inherited from both the resistant and susceptible parents.


BMC Genetics | 2015

Genomic architecture of potato resistance to Synchytrium endobioticum disentangled using SSR markers and the 8.3k SolCAP SNP genotyping array

Jude Eijkeme Obidiegwu; Rena Sanetomo; Kerstin Flath; Eckhard Tacke; Hans-Reinhard Hofferbert; Andrea Hofmann; Birgit Walkemeier; Christiane Gebhardt

BackgroundThe soil borne, obligate biotrophic fungus Synchytrium endobioticum causes tumor-like tissue proliferation (wart) in potato tubers and thereby considerable crop damage. Chemical control is not effective and unfriendly to the environment. S. endobioticum is therefore a quarantined pathogen. The emergence of new pathotypes of the fungus aggravate this agricultural problem. The best control of wart disease is the cultivation of resistant varieties. Phenotypic screening for resistant cultivars is however time, labor and material intensive. Breeding for resistance would therefore greatly benefit from diagnostic DNA markers that can be applied early in the breeding cycle. The prerequisite for the development of diagnostic DNA markers is the genetic dissection of the factors that control resistance to S. endobioticum in various genetic backgrounds of potato.ResultsProgeny of a cross between a wart resistant and a susceptible tetraploid breeding clone was evaluated for resistance to S. endobioticum pathotypes 1, 2, 6 and 18 most relevant in Europe. The same progeny was genotyped with 195 microsatellite and 8303 single nucleotide polymorphism (SNP) markers. Linkage analysis identified the multi-allelic locus Sen1/RSe-XIa on potato chromosome XI as major factor for resistance to all four S. endobioticum pathotypes. Six additional, independent modifier loci had smaller effects on wart resistance. Combinations of markers linked to Sen1/RSe-XIa resistance alleles with one to two additional markers were sufficient for obtaining high levels of resistance to S. endobioticum pathotypes 1, 2, 6 and 18 in the analyzed genetic background.ConclusionsPotato resistance to S. endobioticum is oligogenic with one major and several minor resistance loci. It is composed of multiple alleles for resistance and susceptibility that originate from multiple sources. The genetics of resistance to S. endobioticum varies therefore between different genetic backgrounds. The DNA markers described in this paper are the starting point for pedigree based selection of cultivars with high levels of resistance to S. endobioticum pathotypes 1, 2, 6 and 18.


Phytopathology | 2017

Genomic and Transcriptomic Resources for Marker Development in Synchytrium endobioticum, an Elusive but Severe Potato Pathogen

Friederike Busse; Annette Bartkiewicz; Diro Terefe-Ayana; Frank Niepold; Yvonne Schleusner; Kerstin Flath; Nicole Sommerfeldt-Impe; Jens Lübeck; Josef Strahwald; Eckhard Tacke; Hans-Reinhard Hofferbert; Marcus Linde; Jarosław Przetakiewicz; T. Debener

Synchytrium endobioticum is an obligate biotrophic fungus that causes wart diseases in potato. Like other species of the class Chytridiomycetes, it does not form mycelia and its zoospores are small, approximately 3 μm in diameter, which complicates the detection of early stages of infection. Furthermore, potato wart disease is difficult to control because belowground organs are infected and resting spores of the fungus are extremely durable. Thus, S. endobioticum is classified as a quarantine organism. More than 40 S. endobioticum pathotypes have been reported, of which pathotypes 1(D1), 2(G1), 6(O1), 8(F1), and 18(T1) are the most important in Germany. No molecular methods for the differentiation of pathotypes are available to date. In this work, we sequenced both genomic DNA and cDNA of the German pathotype 18(T1) from infected potato tissue and generated 5,422 expressed sequence tags (EST) and 423 genomic contigs. Comparative sequencing of 33 genes, single-stranded confirmation polymorphism (SSCP) analysis with polymerase chain reaction fragments of 27 additional genes, as well as the analysis of 41 simple sequence repeat (SSR) loci revealed extremely low levels of variation among five German pathotypes. From these markers, one sequence-characterized amplified region marker and five SSR markers revealed polymorphisms among the German pathotypes and an extended set of 11 additional European isolates. Pathotypes 8(F1) and 18(T1) displayed discrete polymorphisms which allow their differentiation from other pathotypes. Overall, using the information of the six markers, the 16 isolates could be differentiated into three distinct genotype groups. In addition to the presented markers, the new collection of EST from genus Synchytrium might serve in the future for molecular taxonomic studies as well as for analyses of the host-pathogen interactions in this difficult pathosystem. [Formula: see text] Copyright


Frontiers in Plant Science | 2018

Maximization of Markers Linked in Coupling for Tetraploid Potatoes via Monoparental Haploids

Annette Bartkiewicz; Friederike Chilla; Diro Terefe-Ayana; Jens Lübeck; Josef Strahwald; Eckhard Tacke; Hans-Reinhard Hofferbert; Marcus Linde; T. Debener

Haploid potato populations derived from a single tetraploid donor constitute an efficient strategy to analyze markers segregating from a single donor genotype. Analysis of marker segregation in populations derived from crosses between polysomic tetraploids is complicated by a maximum of eight segregating alleles, multiple dosages of the markers and problems related to linkage analysis of marker segregation in repulsion. Here, we present data on two monoparental haploid populations generated by prickle pollination of two tetraploid cultivars with Solanum phureja and genotyped with the 12.8 k SolCAP single nucleotide polymorphism (SNP) array. We show that in a population of monoparental haploids, the number of biallelic SNP markers segregating in linkage to loci from the tetraploid donor genotype is much larger than in putative crosses of this genotype to a diverse selection of 125 tetraploid cultivars. Although this strategy is more laborious than conventional breeding, the generation of haploid progeny for efficient marker analysis is straightforward if morphological markers and flow cytometry are utilized to select true haploid progeny. The level of introgressed fragments from S. phureja, the haploid inducer, is very low, supporting its suitability for genetic analysis. Mapping with single-dose markers allowed the analysis of quantitative trait loci (QTL) for four phenotypic traits.


Genetics | 2005

DNA Variation at the Invertase Locus invGE/GF Is Associated With Tuber Quality Traits in Populations of Potato Breeding Clones

Li Li; Josef Strahwald; Hans-Reinhard Hofferbert; Jens Lübeck; Eckart Tacke; Holger Junghans; Jörg Wunder; Christiane Gebhardt


Plant Biotechnology Journal | 2008

Precision breeding for novel starch variants in potato

Jost Muth; Stefanie Hartje; Richard M. Twyman; Hans-Reinhard Hofferbert; Eckhard Tacke; Dirk Prüfer


Theoretical and Applied Genetics | 2009

Using SNP markers to dissect linkage disequilibrium at a major quantitative trait locus for resistance to the potato cyst nematode Globodera pallida on potato chromosome V

Ute Achenbach; Joao Paulo; Evgenyia Ilarionova; Jens Lübeck; Josef Strahwald; Eckhard Tacke; Hans-Reinhard Hofferbert; Christiane Gebhardt

Collaboration


Dive into the Hans-Reinhard Hofferbert's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge