Hans-Reinhard Müller
Dartmouth College
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans-Reinhard Müller.
The Astrophysical Journal | 2002
Brian E. Wood; Hans-Reinhard Müller; G. P. Zank; Jeffrey L. Linsky
Collisions between the winds of solar-like stars and the local interstellar medium result in a population of hot hydrogen gas surrounding these stars. Absorption from this hot H i can be detected in high-resolution Lyspectra of these stars from the Hubble Space Telescope. The amount of absorption can be used as a diag- nostic for the stellar mass-loss rate. We present new mass-loss rate measurements derived in this fashion for four stars (� Eri, 61 Cyg A, 36 Oph AB, and 40 Eri A). Combining these measurements with others, we study how mass loss varies with stellar activity. We find that for the solar-like GK dwarfs, the mass loss per unit sur- face area is correlated with X-ray surface flux. Fitting a power law to this relation yields _ M / F 1:15� 0:20 X. The active M dwarf Proxima Cen and the very active RS CVn systemAnd appear to be inconsistent with this relation. Since activity is known to decrease with age, the above power-law relation for solar-like stars sug- gests that mass loss decreases with time. We infer a power-law relation of _ M / t � 2:00� 0:52 . This suggests that the solar wind may have been as much as 1000 times more massive in the distant past, which may have had important ramifications for the history of planetary atmospheres in our solar system, that of Mars in particular. Subject headings: hydrodynamics — stars: winds, outflows — ultraviolet: ISM — ultraviolet: stars
The Astrophysical Journal | 2005
Brian E. Wood; Hans-Reinhard Müller; G. P. Zank; J. L. Linsky; Seth Redfield
Measurements of stellar mass-loss rates are used to assess how wind strength varies with coronal activity and age for solar-like stars. Mass loss generally increases with activity, but we find evidence that winds suddenly weaken at a certain activity threshold. Very active stars are often observed to have polar starspots, and we speculate that the magnetic field geometry associated with these spots may be inhibiting the winds. Our inferred mass-loss/age relation represents an empirical estimate of the history of the solar wind. This result is important for planetary studies as well as solar/stellar astronomy, since solar wind erosion may have played an important role in the evolution of planetary atmospheres.
Astrophysical Journal Supplement Series | 2005
Brian E. Wood; Seth Redfield; Jeffrey L. Linsky; Hans-Reinhard Müller; G. P. Zank
We search the Hubble Space Telescope (HST) archive for previously unanalyzed observations of stellar H I Lyα emission lines, our primary purpose being to look for new detections of Lyα absorption from the outer heliosphere and to also search for analogous absorption from the astrospheres surrounding the observed stars. The astrospheric absorption is of particular interest because it can be used to study solar-like stellar winds that are otherwise undetectable. We find and analyze 33 HST Lyα spectra in the archive. All the spectra were taken with the E140M grating of the Space Telescope Imaging Spectrograph (STIS) instrument on board HST. The HST STIS spectra yield four new detections of heliospheric absorption (70 Oph, ξ Boo, 61 Vir, and HD 165185) and seven new detections of astrospheric absorption (EV Lac, 70 Oph, ξ Boo, 61 Vir, δ Eri, HD 128987, and DK UMa), doubling the previous number of heliospheric and astrospheric detections. When combined with previous results, 10 of 17 lines of sight within 10 pc yield detections of astrospheric absorption. This high detection fraction implies that most of the ISM within 10 pc must be at least partially neutral, since the presence of H I within the ISM surrounding the observed star is necessary for an astrospheric detection. In contrast, the detection percentage is only 9.7% (3 out of 31) for stars beyond 10 pc. Our Lyα analyses provide measurements of ISM H I and D I column densities for all 33 lines of sight, and we discuss some implications of these results. Finally, we measure chromospheric Lyα fluxes from the observed stars. We use these fluxes to determine how Lyα flux correlates with coronal X-ray and chromospheric Mg II emission, and we also study how Lyα emission depends on stellar rotation.
Physical Review D | 1995
Edmund J. Copeland; Marcelo Gleiser; Hans-Reinhard Müller
Oscillons are localized, nonsingular, time-dependent, spherically symmetric solutions of nonlinear scalar field theories which, although unstable, are {ital extremely} long lived. We show that they naturally appear during the collapse of subcritical bubbles in models with symmetric and asymmetric double-well potentials. By a combination of analytical and numerical work we explain several of their properties, including the conditions for their existence, their longevity, and their final demise. We discuss several contexts in which we expect oscillons to be relevant. In particular, their nucleation during cosmological phase transitions may have wide-ranging consequences.
The Astrophysical Journal | 2006
Hans-Reinhard Müller; Priscilla C. Frisch; Vladimir A. Florinski; G. P. Zank
At present, the heliosphere is embedded in a warm, low-density interstellar cloud that belongs to a cloud system flowing through the local standard of rest with a velocity near ~18 km s-1. The velocity structure of the nearest interstellar material (ISM), combined with theoretical models of the local interstellar cloud (LIC), suggest that the Sun passes through cloudlets on timescales of ≤103-104 yr, so the heliosphere has been, and will be, exposed to different interstellar environments over time. By means of a multifluid model that treats plasma and neutral hydrogen self-consistently, the interaction of the solar wind with a variety of partially ionized ISM is investigated, with the focus on low-density cloudlets such as are currently near the Sun. Under the assumption that the basic solar wind parameters remain/were as they are today, a range of ISM parameters (from cold neutral to hot ionized, with various densities and velocities) is considered. In response to different interstellar boundary conditions, the heliospheric size and structure change, as does the abundance of interstellar and secondary neutrals in the inner heliosphere, and the cosmic-ray level in the vicinity of Earth. Some empirical relations between interstellar parameters and heliospheric boundary locations, as well as neutral densities, are extracted from the models.
Journal of Geophysical Research | 2000
Hans-Reinhard Müller; G. P. Zank; Alexander S. Lipatov
A new method for investigating the interaction of the solar wind with the partially ionized local interstellar medium (LISM) is presented. The solar wind and the interstellar plasma are modeled using a two-dimensional (2-D) hydrodynamic numerical code. The plasma is coupled to the neutral hydrogen (of both interstellar and solar wind origin) via resonant charge exchange. To model the neutral H distribution, we use a nonstationary 2.5-D particle mesh, method to solve the Boltzmann equation, which is coupled self-consistently to the interstellar and solar wind plasma. Numerical self-consistency is achieved by iterating the plasma and neutral H distributions between the two numerical schemes until a steady state is achieved. Results from three test applications are presented and discussed, including the first one-shock kinetic simulation. The simulations are able to reproduce the main features of the heliosphere such as shock structure, hydrogen wall, and heating, deceleration and filtration of neutral hydrogen. In addition, they enable the study and interpretation of the non-Maxwellian hydrogen distribution function. Traces of fast neutrals originating inside the termination shock and the heliosheath/heliotail region can be found far upstream of the outer heliosphere. The influence of different interstellar plasma boundary values on the heliosphere is highlighted in the comparison of two supersonic simulations and one subsonic simulation. In particular, by comparing the simulated energetic neutral atom (ENA) fluxes at 1 AU of the supersonic and subsonic models, it is found that the subsonic flux is significantly underabundant in the energy range 10 – 60 eV compared to the supersonic case. This may offer an important diagnostic for determining whether the heliosphere possesses a bow shock or not.
The Astrophysical Journal | 2014
Brian E. Wood; Hans-Reinhard Müller; Seth Redfield; Eric Edelman
The early history of the solar wind has remained largely a mystery due to the difficulty of detecting winds around young stars that can serve as analogs for the young Sun. Here we report on the detection of a wind from the 500 Myr old solar analog π1 UMa (G1.5 V), using spectroscopic observations from the Hubble Space Telescope. We detect H I Lyα absorption from the interaction region between the stellar wind and interstellar medium, i.e., the stellar astrosphere. With the assistance of hydrodynamic models of the π1 UMa astrosphere, we infer a wind only half as strong as the solar wind for this star. This suggests that the Sun and solar-like stars do not have particularly strong coronal winds in their youth.
Astronomy and Astrophysics | 2008
Hans-Reinhard Müller; Vladimir A. Florinski; Jacob Heerikhuisen; Vladislav V. Izmodenov; Klaus Scherer; D. B. Alexashov; H. J. Fahr
Context. Modeling of the global heliosphere seeks to investigate the interaction of the solar wind with the partially ionized local interstellar medium. Models that treat neutral hydrogen self-consistently and in great detail, together with the plasma, but that neglect magnetic fields, constitute a sub-category within global heliospheric models. Aims. There are several different modeling strategies used for this sub-category in the literature. Differences and commonalities in the modeling results from different strategies are pointed out. Methods. Plasma-only models and fully self-consistent models from four research groups, for which the neutral species is modeled with either one, three, or four fluids, or else kinetically, are run with the same boundary parameters and equations. They are compared to each other with respect to the locations of key heliospheric boundary locations and with respect to the neutral hydrogen content throughout the heliosphere. Results. In many respects, the models’ predictions are similar. In particular, the locations of the termination shock agree to within 7% in the nose direction and to within 14% in the downwind direction. The nose locations of the heliopause agree to within 5%. The filtration of neutral hydrogen from the interstellar medium into the inner heliosphere, however, is model dependent, as are other neutral results including the hydrogen wall. These differences are closely linked to the strength of the interstellar bow shock. The comparison also underlines that it is critical to include neutral hydrogen into global heliospheric models.
The Astrophysical Journal | 2015
Brian E. Wood; Hans-Reinhard Müller; M. Witte
We report the results of a comprehensive reanalysis of Ulysses observations of interstellar He atoms flowing through the solar system, the goal being to reassess the interstellar He flow vector and to search for evidence of variability in this vector. We find no evidence that the He beam seen by Ulysses changes at all from 1994-2007. The direction of flow changes by no more than ~03 and the speed by no more than ~0.3 km s–1. A global fit to all acceptable He beam maps from 1994-2007 yields the following He flow parameters: V ISM = 26.08 ± 0.21 km s–1, λ = 75.54 ± 019, β = –5.44 ± 024, and T = 7260 ± 270 K; where λ and β are the ecliptic longitude and latitude direction in J2000 coordinates. The flow vector is consistent with the original analysis of the Ulysses team, but our temperature is significantly higher. The higher temperature somewhat mitigates a discrepancy that exists in the He flow parameters measured by Ulysses and the Interstellar Boundary Explorer, but does not resolve it entirely. Using a novel technique to infer photoionization loss rates directly from Ulysses data, we estimate a density of n He = 0.0196 ± 0.0033 cm–3 in the interstellar medium.
The Astrophysical Journal | 2000
Brian E. Wood; Hans-Reinhard Müller; G. P. Zank
We use self-consistent kinetic/hydrodynamic models of the heliosphere to predict H I Lyα absorption profiles for various lines of sight through the heliosphere. These results are compared with Lyα absorption lines of six nearby stars observed by the Hubble Space Telescope. The directions of these lines of sight range from nearly upwind (36 Oph) to nearly downwind ( Eri). Only three of the Lyα spectra (36 Oph, α Cen, and Sirius) actually show evidence for the presence of heliospheric absorption, which is blended with the ubiquitous interstellar absorption, but the other three spectra still provide useful upper limits for the amount of heliospheric absorption for those lines of sight. Most of our models use a Boltzmann particle code for the neutrals, allowing us to estimate neutral velocity distributions throughout the heliosphere, from which we compute model Lyα absorption profiles. In comparing these models with the data, we find they predict too much absorption in sidewind and downwind directions, especially when higher Mach numbers are assumed for the interstellar wind. Models created assuming different values of the interstellar temperature and proton density fail to improve the agreement. Somewhat surprisingly, a model that uses a multifluid treatment of the neutrals rather than the Boltzmann particle code is more consistent with the data, and we speculate as to why this may be the case.