Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Schlager is active.

Publication


Featured researches published by Hans Schlager.


Journal of Geophysical Research | 2006

International Consortium for Atmospheric Research on Transport and Transformation (ICARTT): North America to Europe—Overview of the 2004 summer field study

F. C. Fehsenfeld; Gérard Ancellet; T. S. Bates; Allen H. Goldstein; R. M. Hardesty; Richard E. Honrath; Kathy S. Law; Alastair C. Lewis; Richard Leaitch; S. A. McKeen; J. F. Meagher; D. D. Parrish; Alexander A. P. Pszenny; P. B. Russell; Hans Schlager; John H. Seinfeld; Robert W. Talbot; R. Zbinden

In the summer of 2004 several separate field programs intensively studied the photochemical, heterogeneous chemical and radiative environment of the troposphere over North America, the North Atlantic Ocean, and western Europe. Previous studies have indicated that the transport of continental emissions, particularly from North America, influences the concentrations of trace species in the troposphere over the North Atlantic and Europe. An international team of scientists, representing over 100 laboratories, collaborated under the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) umbrella to coordinate the separate field programs in order to maximize the resulting advances in our understanding of regional air quality, the transport, chemical transformation and removal of aerosols, ozone, and their precursors during intercontinental transport, and the radiation balance of the troposphere. Participants utilized nine aircraft, one research vessel, several ground-based sites in North America and the Azores, a network of aerosol-ozone lidars in Europe, satellites, balloon borne sondes, and routine commercial aircraft measurements. In this special section, the results from a major fraction of those platforms are presented. This overview is aimed at providing operational and logistical information for those platforms, summarizing the principal findings and conclusions that have been drawn from the results, and directing readers to specific papers for further details.


Journal of Geophysical Research | 2007

Processes influencing ozone levels in Alaskan forest fire plumes during long-range transport over the North Atlantic

Elsa Real; Kathy S. Law; Bernadett Weinzierl; Monika Fiebig; Andreas Petzold; Oliver Wild; John Methven; S. R. Arnold; Andreas Stohl; Heide Huntrieser; Anke Roiger; Hans Schlager; D. Stewart; M. Avery; G. W. Sachse; Edward V. Browell; Richard A. Ferrare; D. R. Blake

[1] A case of long-range transport of a biomass burning plume from Alaska to Europe is analyzed using a Lagrangian approach. This plume was sampled several times in the free troposphere over North America, the North Atlantic and Europe by three different aircraft during the IGAC Lagrangian 2K4 experiment which was part of the ICARTT/ ITOP measurement intensive in summer 2004. Measurements in the plume showed enhanced values of CO, VOCs and NOy, mainly in form of PAN. Observed O-3 levels increased by 17 ppbv over 5 days. A photochemical trajectory model, CiTTyCAT, was used to examine processes responsible for the chemical evolution of the plume. The model was initialized with upwind data and compared with downwind measurements. The influence of high aerosol loading on photolysis rates in the plume was investigated using in situ aerosol measurements in the plume and lidar retrievals of optical depth as input into a photolysis code (Fast-J), run in the model. Significant impacts on photochemistry are found with a decrease of 18% in O-3 production and 24% in O-3 destruction over 5 days when including aerosols. The plume is found to be chemically active with large O-3 increases attributed primarily to PAN decomposition during descent of the plume toward Europe. The predicted O-3 changes are very dependent on temperature changes during transport and also on water vapor levels in the lower troposphere which can lead to O-3 destruction. Simulation of mixing/dilution was necessary to reproduce observed pollutant levels in the plume. Mixing was simulated using background concentrations from measurements in air masses in close proximity to the plume, and mixing timescales ( averaging 6.25 days) were derived from CO changes. Observed and simulated O-3/CO correlations in the plume were also compared in order to evaluate the photochemistry in the model. Observed slopes change from negative to positive over 5 days. This change, which can be attributed largely to photochemistry, is well reproduced by multiple model runs even if slope values are slightly underestimated suggesting a small underestimation in modeled photochemical O-3 production. The possible impact of this biomass burning plume on O-3 levels in the European boundary layer was also examined by running the model for a further 5 days and comparing with data collected at surface sites, such as Jungfraujoch, which showed small O-3 increases and elevated CO levels. The model predicts significant changes in O-3 over the entire 10 day period due to photochemistry but the signal is largely lost because of the effects of dilution. However, measurements in several other BB plumes over Europe show that O-3 impact of Alaskan fires can be potentially significant over Europe.


Journal of Geophysical Research | 1997

In Situ Observations of Air Traffic Emission Signatures in the North Atlantic Flight Corridor

Hans Schlager; Paul Konopka; P. Schulte; U. Schumann; H. Ziereis; F. Arnold; M. Klemm; Donald E. Hagen; Philip D. Whitefield; J. Ovarlez

Focussed aircraft measurements have been carried out over the eastern North Atlantic to search for signals of air traffic emissions in the flight corridor region. Observations include NO, NO2, HNO3, SO2, O3, H2O, total condensation nuclei (CN), and meteorological parameters. A flight pattern with constant-altitude north-south legs across the major North Atlantic air traffic tracks was flown. Signatures of air traffic emissions were clearly detected for NOx, SO2, and CN with peak concentrations of 2 ppbv, 0.25 ppbv, and 500 cm−3, respectively, exceeding background values by factors of 30 (NOx), 5 (SO2), and 3 (CN). The observed NOx, SO2, and CN peaks were attributed to aircraft plumes based on radar observations of the source air traffic and wind measurements. Major aircraft exhaust signatures are due to relatively fresh emissions, i.e., superpositions of 2 to 5 plumes with ages of about 15 min to 3 hs. The observed plume peak concentrations of NOx compare fairly well with concentrations computed with a Gaussian plume model using horizontal and vertical diffusivities as obtained by recent large-eddy simulations, measured vertical wind shear, and the corridor air traffic information. For the major emission signatures a mean CN/NOx abundance ratio of 300 cm−3ppbv−1 was measured corresponding to an emission index (EI) of about 1016 particles per 1 kg fuel burnt. This is higher than the expected soot particle EI of modern wide-bodied aircraft. For the most prominent plumes no increase of HNO3 concentrations exceeding variations of background values was observed. This indicates that only a small fraction of the emitted NOx is oxidized in the plumes within a timescale of about 3 hs for the conditions of the measurements.


Journal of Geophysical Research | 1998

Transport and production of NO X in electrified thunderstorms: Survey of previous studies and new observations at midlatitudes

Heidi Huntrieser; Hans Schlager; Ch. Feigl; Hartmut Höller

First airborne NOx (NO+NO2) measurements in anvils of active thunderstorms in Europe were performed in summer 1996 over southern Germany and Switzerland (47°-49°N). This field experiment LINOX (lightning-produced NOx) was designed to study the production of NOx by lightning discharges and the transport in convective storms. With the research aircraft Falcon of the Deutsches Zentrum fur Luft- und Raumfahrt, about 20 anvil penetrations were performed including measurements of NO, NO2, CO2, O3, and meteorological parameters. In thunderstorm anvils, mean NOx mixing ratios between 0.8 and 2.2 ppbv were measured with peak values reaching up to 4 ppbv. A considerable part of these enhancements could be attributed to the transport of polluted air from the planetary boundary layer (PBL) using CO2 as tracer for PBL air. NOx produced by lightning can be obtained by subtracting the fraction of NOx transported from the PBL from total NOx measured in the anvil. The NOx/CO2 correlation in larger cumulus clouds without lightning was used as reference for the transport of PBL air in the anvils. In smaller LINOX thunderstorms the contribution from lightning, respectively, PBL transport to anvil NOx, was about equal. However, in medium and large LINOX thunderstorms the contribution from lightning dominated (60–75%). For these kind of thunderstorms it was estimated that ∼1.0±0.5 ppbv NOx resulted from lightning production. The observations were used to quantify the NOx production per thunderstorm and to give a rough estimate of the annual production of NOx. For the global lightning nitrogen budget the uncertainties were considerable (0.3–22 Tg(N) yr−1). The mean value for the global NOx production rate by lightning in the upper troposphere was estimated to 4 Tg(N) yr−1.


Journal of Geophysical Research | 2002

Influence of fuel sulfur on the composition of aircraft exhaust plumes: The experiments SULFUR 1–7

U. Schumann; F. Arnold; Reinhold Busen; Joachim Curtius; Bernd Kärcher; A. Kiendler; Andreas Petzold; Hans Schlager; F. Schröder; Karl-Heinz Wohlfrom

[1] The series of SULFUR experiments was performed to determine the aerosol particle and contrail formation properties of aircraft exhaust plumes for different fuel sulfur contents (FSC, from 2 to 5500 mg/g), flight conditions, and aircraft (ATTAS, A310, A340, B707, B747, B737, DC8, DC10). This paper describes the experiments and summarizes the results obtained, including new results from SULFUR 7. The conversion fraction e of fuel sulfur to sulfuric acid is measured in the range 0.34 to 4.5% for an older (Mk501) and 3.3 ± 1.8% for a modern engine (CFM56-3B1). For low FSC, e is considerably smaller than what is implied by the volume of volatile particles in the exhaust. For FSC � 100 mg/g and e as measured, sulfuric acid is the most important precursor of volatile aerosols formed in aircraft exhaust plumes of modern engines. The aerosol measured in the plumes of various aircraft and models suggests e to vary between 0.5 and 10% depending on the engine and its state of operation. The number of particles emitted from various subsonic aircraft engines or formed in the exhaust plume per unit mass of burned fuel varies from 2 � 10 14 to 3 � 10 15 kg � 1 for nonvolatile particles (mainly black carbon or soot) and is of order 2 � 10 17 kg � 1 for volatile particles >1.5 nm at plume ages of a few seconds. Chemiions (CIs) formed in kerosene combustion are found to be quite abundant and massive. CIs contain sulfur-bearing molecules and organic matter. The concentration of CIs at engine exit is nearly 10 9 cm � 3 . Positive and negative CIs are found with masses partially exceeding 8500 atomic mass units. The measured number of volatile particles cannot be explained with binary homogeneous nucleation theory but is strongly related to the number of CIs. The number of ice particles in young contrails is close to the number of soot particles at low FSC and increases with increasing FSC. Changes in soot particles and FSC have little impact on the threshold temperature for contrail formation (less than 0.4 K). INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0320 Atmospheric Composition and Structure: Cloud physics and chemistry; 0345 Atmospheric Composition and Structure: Pollution—urban and regional (0305); KEYWORDS: chemiion, sulfur, soot, contrail, aircraft, emission


Journal of Geophysical Research | 1995

Estimate of diffusion parameters of aircraft exhaust plumes near the tropopause from nitric oxide and turbulence measurements

U. Schumann; Paul Konopka; Robert Baumann; Reinhold Busen; T. Gerz; Hans Schlager; P. Schulte; H. Volkert

Horizontal and vertical plume scales and respective diffusivities for dispersion of exhaust plumes from airliners at cruising altitudes are determined from nitric oxide (NO) and turbulence data measured with the DLR Falcon research aircraft flying through the plumes. Ten plumes of known source aircraft were encountered about 5 to 100 min after emission at about 9.4 to 11.3 km altitude near the tropopause in the North Atlantic flight corridor at 8°W on three days in October 1993. The ambient atmosphere was stably stratified with bulk Richardson numbers greater than 10. The measured NO peaks had half widths of 500 to 2000 m with maximum concentrations up to 2.4 parts per billion by volume (ppbv), clearly exceeding the background values between 0.13 and 0.5 ppbv. For analysis the measured plumes are approximated by an analytical Gaussian plume model which accounts for anisotropic diffusion in the stably stratified atmosphere and for shear. Two methods are given to obtain diffusivity parameters from either the individual plume data or the set of all plume measurements. Using estimates of the emitted mass of NO per unit length, the vertical plume width is found to be 140 m on average. This width is related to mixing in the initial trailing vortex pair of the aircraft. The range of the plume data suggests vertical diffusivity values between 0 and 0.6 m2 s−1. The turbulence data exhibit strong anisotropic air motions with practically zero turbulent dissipation and weak vertical velocity fluctuations. This implies very small vertical diffusivities. The horizontal diffusivity is estimated as between 5 and 20 m2 s−1 from the increase of horizontal plume scales with time. For constant diffusivities, shear dominates the lateral dispersion after a time of about 1 hour even for the cases with only a weak mean shear of 0.002 s−1.


Bulletin of the American Meteorological Society | 2015

The Deep Convective Clouds and Chemistry (DC3) Field Campaign

M. C. Barth; C. A. Cantrell; William H. Brune; Steven A. Rutledge; J. H. Crawford; Heidi Huntrieser; Lawrence D. Carey; Donald R. MacGorman; Morris L. Weisman; Kenneth E. Pickering; Eric C. Bruning; Bruce E. Anderson; Eric C. Apel; Michael I. Biggerstaff; Teresa L. Campos; Pedro Campuzano-Jost; R. C. Cohen; John D. Crounse; Douglas A. Day; Glenn S. Diskin; F. Flocke; Alan Fried; C. Garland; Brian G. Heikes; Shawn B. Honomichl; Rebecca S. Hornbrook; L. Gregory Huey; Jose L. Jimenez; Timothy J. Lang; Michael Lichtenstern

AbstractThe Deep Convective Clouds and Chemistry (DC3) field experiment produced an exceptional dataset on thunderstorms, including their dynamical, physical, and electrical structures and their impact on the chemical composition of the troposphere. The field experiment gathered detailed information on the chemical composition of the inflow and outflow regions of midlatitude thunderstorms in northeast Colorado, west Texas to central Oklahoma, and northern Alabama. A unique aspect of the DC3 strategy was to locate and sample the convective outflow a day after active convection in order to measure the chemical transformations within the upper-tropospheric convective plume. These data are being analyzed to investigate transport and dynamics of the storms, scavenging of soluble trace gases and aerosols, production of nitrogen oxides by lightning, relationships between lightning flash rates and storm parameters, chemistry in the upper troposphere that is affected by the convection, and related source character...


Journal of Geophysical Research | 2006

Ozone production from the 2004 North American boreal fires

G. G. Pfister; Louisa Kent Emmons; Peter G. Hess; Richard E. Honrath; Jean-Francois Lamarque; M. Val Martin; R. C. Owen; M. Avery; Edward V. Browell; John S. Holloway; Philippe Nedelec; R. M. Purvis; T. B. Ryerson; G. W. Sachse; Hans Schlager

We examine the ozone production from boreal forest fires based on a case study of wildfires in Alaska and Canada in summer 2004. The model simulations were performed with the chemistry transport model, MOZART-4, and were evaluated by comparison with a comprehensive set of aircraft measurements. In the analysis we use measurements and model simulations of carbon monoxide (CO) and ozone (O3) at the PICO-NARE station located in the Azores within the pathway of North American outflow. The modeled mixing ratios were used to test the robustness of the enhancement ratio ΔO3/ΔCO (defined as the excess O3 mixing ratio normalized by the increase in CO) and the feasibility for using this ratio in estimating the O3 production from the wildfires. Modeled and observed enhancement ratios are about 0.25 ppbv/ppbv which is in the range of values found in the literature and results in a global net O3 production of 12.9 ± 2 Tg O3 during summer 2004. This matches the net O3 production calculated in the model for a region extending from Alaska to the east Atlantic (9–11 Tg O3) indicating that observations at PICO-NARE representing photochemically well aged plumes provide a good measure of the O3 production of North American boreal fires. However, net chemical loss of fire-related O3 dominates in regions far downwind from the fires (e.g., Europe and Asia) resulting in a global net O3 production of 6 Tg O3 during the same time period. On average, the fires increased the O3 burden (surface −300 mbar) over Alaska and Canada during summer 2004 by about 7–9% and over Europe by about 2–3%.


Geophysical Research Letters | 1997

Observation of upper tropospheric sulfur dioxide- and acetone-pollution: Potential implications for hydroxyl radicaland aerosol formation

F. Arnold; J. Schneider; K. Gollinger; Hans Schlager; P. Schulte; Donald E. Hagen; Philip D. Whitefield; P. F. J. van Velthoven

Aircraft-based measurements of sulfur dioxide, acetone, carbon dioxide, and condensation nuclei (CN) were made over the north-eastern Atlantic at upper tropospheric altitudes, around 9000 m. On October 14, 1993, strong SO2- and acetone-pollution (both up to 3 ppbv) were observed, which were accompanied by a CO2-enhancement of up to 6 ppmv, and large CN-concentrations of up to about 1500 cm−3 (for radii ≥ 6 nm). CN, excess CO2, and to a lesser degree also acetone, were positively correlated with SO2. Air mass trajectory analyses indicate, that most of the air masses encountered by our aircraft originated from the polluted planetary boundary layer of the North-Eastern U. S. approximately 4–5 days prior to our measurements, and that polluted boundary layer air experienced fast vertical transport to the upper troposphere as well as horizontal transport across the Atlantic. From our data we conclude, that in the polluted air mass around 9000 m altitude HOx-formation, photochemical SO2-conversion to gaseous H2SO4, and eventually also CN-formation by homogeneous bimolecular (H2SO4-H2O) nucleation may have taken place with enhanced efficiency.


Journal of Geophysical Research | 2000

Pollution from aircraft emissions in the North Atlantic flight corridor : overview on the POLINAT projects

Ulrich Schumann; Hans Schlager; F. Arnold; J. Ovarlez; H. Kelder; Øystein Hov; G. Hayman; Ivar S. A. Isaksen; Johannes Staehelin; Philip D. Whitefield

The Pollution From Aircraft Emissions in the North Atlantic Flight Corridor (POLINAT) projects were undertaken to investigate the impact of aircraft engine exhaust emissions on the state of the atmosphere in the North Atlantic flight corridor. Changes in the composition of the lower stratosphere and upper troposphere from aircraft emissions are identified from combined measurements and model analyses. Measurements were performed using the Deutsches Zentrum fur Luft- und Raumfahrt Falcon research aircraft and a Swissair B-747 over the North Atlantic covering the altitude range 6 to 13 km in November 1994 and June/July 1995 and from August to November 1997. The measurements include those of nitrogen oxides, nitrous and nitric acids, sulfur dioxide, sulfuric acid, acetone, carbon dioxide, ozone, water vapor, carbon monoxide, aerosols, and meteorological parameters. The atmospheric composition was found to be highly variable, and emissions from sources at the surface or from lightning discharges also contribute strongly to the nitrogen oxides abundance and ozone formation. Contributions from aircraft emissions have been measured and identified in single and multiple plumes of several hours ages, and accumulation of such nitrogen oxides and particles emissions can be identified under certain conditions in and downstream of the flight corridor region. Acetone was found at high mixing ratios. The global and regional models predict ozone increases of 3 to 6% by current air traffic at the flight corridor altitude north of 30°N, in agreement with previous model analyses but too small to be measurable. In autumn, the upper troposphere is often humid with water vapor concentration far above ice saturation, providing conditions for persistent contrails.

Collaboration


Dive into the Hans Schlager's collaboration.

Top Co-Authors

Avatar

H. Ziereis

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anke Roiger

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andreas Petzold

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar

C. Schiller

Forschungszentrum Jülich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Stock

German Aerospace Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge