Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Schouten is active.

Publication


Featured researches published by Hans Schouten.


Nature | 2003

An ultraslow-spreading class of ocean ridge

Henry J. B. Dick; Jian Lin; Hans Schouten

New investigations of the Southwest Indian and Arctic ridges reveal an ultraslow-spreading class of ocean ridge that is characterized by intermittent volcanism and a lack of transform faults. We find that the mantle beneath such ridges is emplaced continuously to the seafloor over large regions. The differences between ultraslow- and slow-spreading ridges are as great as those between slow- and fast-spreading ridges. The ultraslow-spreading ridges usually form at full spreading rates less than about 12 mm yr-1, though their characteristics are commonly found at rates up to approximately 20 mm yr-1. The ultraslow-spreading ridges consist of linked magmatic and amagmatic accretionary ridge segments. The amagmatic segments are a previously unrecognized class of accretionary plate boundary structure and can assume any orientation, with angles relative to the spreading direction ranging from orthogonal to acute. These amagmatic segments sometimes coexist with magmatic ridge segments for millions of years to form stable plate boundaries, or may displace or be displaced by transforms and magmatic ridge segments as spreading rate, mantle thermal structure and ridge geometry change.


Marine Geophysical Researches | 1993

Segmentation and morphotectonic variations along a slow-spreading center: The Mid-Atlantic Ridge (24°00′ N– 30°40′ N)

Jean-Christophe Sempéré; Jian Lin; Holly S. Brown; Hans Schouten; G. M. Purdy

Analysis of Sea Beam bathymetry along the Mid-Atlantic Ridge between 24°00′ N and 30°40′ N reveals the nature and scale of the segmentation of this slow-spreading center. Except for the Atlantis Transform, there are no transform offsets along this 800-km-long portion of the plate boundary. Instead, the Mid-Atlantic Ridge is offset at intervals of 10–100 km by nontransform discontinuities, usually located at local depth maxima along the rift valley. At these discontinuities, the horizontal shear between offset ridge segments is not accommodated by a narrow, sustained transform-zone. Non-transform discontinuities along the MAR can be classified according to their morphology, which is partly controlled by the distance between the offset neovolcanic zones, and their spatial and temporal stability. Some of the non-transform discontinuities are associated with off-axis basins which integrate spatially to form discordant zones on the flanks of the spreading center. These basins may be the fossil equivalents of the terminal lows which flank the neovolcanic zone at the ends of each segment. The off-axis traces, which do not lie along small circles about the pole of opening of the two plates, reflect the migration of the discontinuities along the spreading center.The spectrum of rift valley morphologies ranges from a narrow, deep, hourglass-shaped valley to a wide valley bounded by low-relief rift mountains. A simple classification of segment morphology involves two types of segments. Long and narrow segments are found preferentially on top of the long-wavelength, along-axis bathymetric high between the Kane and Atlantis Transforms. These segments are associated with circular mantle Bouguer anomalies which are consistent with focused mantle upwelling beneath the segment mid-points. Wide, U-shaped segments in cross-section are preferentially found in the deep part of the long-wavelength, along-axis depth profile. These segments do not appear to be associated with circular mantle Bouguer anomalies, indicating perhaps a more complex pattern of mantle upwelling and/or crustal structure. Thus, the long-recognized bimodal distribution of segment morphology may be associated with different patterns of mantle upwelling and/or crustal structure. We propose that the range of observed, first-order variations in segment morphology reflects differences in the flow pattern, volume and temporal continuity of magmatic upwelling at the segment scale. However, despite large first-order differences, all segments display similar intra-segment, morphotectonic variations. We postulate that the intra-segment variability represents differences in the relative importance of volcanism and tectonism along strike away from a zone of enhanced magma upwelling within each segment. The contribution of volcanism to the morphology will be more important near the shallowest portion of the rift valley within each segment, beneath which we postulate that upwelling of magma is enhanced, than beneath the ends of the segment. Conversely, the contribution of tectonic extension to the morphology will become more important toward the spreading center discontinuities. Variations in magmatic budget along the strike of a segment will result in along-axis variations in crustal structure. Segment mid-points may coincide with regions of highest melt production and thick crust, and non-transform discontinuities with regions of lowest melt production and thin crust. This hypothesis is consistent with available seismic and gravity data.The rift valley of the Mid-Atlantic Ridge is in general an asymmetric feature. Near segment mid-points, the rift valley is usually symmetric but, away from the segment mid-points, one side of the rift valley often consists of a steep, faulted slope while the other side forms a more gradual ramp. These observations suggest that half-grabens, rather than full-grabens, are the fundamental building blocks of the rift valley. They also indicate that the pattern of faulting varies along strike at the segment scale, and may be a consequence of the three-dimensional, thermo-mechanical structure of segments associated with enhanced mantle upwelling beneath their mid-points.


Earth and Planetary Science Letters | 1996

Constraining crustal emplacement processes from the variation in seismic layer 2A thickness at the East Pacific Rise

Emilie E.E. Hooft; Hans Schouten; Robert S. Detrick

Abstract A stochastic model for the emplacement of dikes and lava flows at a fast spreading ridge can generate an upper oceanic crustal structure similar to that observed in seismic data from the East Pacific Rise (EPR), in ocean drill holes, and in ophiolites. In this model the location of successive dike intrusion events relative to the ridge axis is determined by a Gaussian probability function and the cumulative flow lengths of the erupted lavas are chosen to build a Gaussian-shaped lava pile. We interpret wide-angle seismic reflections from the steep velocity gradient at the base of seismic layer 2A to be the extrusive/sheeted dike contact. Seismic data from the northern and southern EPR place constraints on the on-axis extrusive layer thickness (230 ± 50 m), the distance over which the thickening of the extrusive layer occurs (width of the accretion zone = 1–3 km) and its off-axis thickness (300–800 m). Ophiolites and ocean drill holes (DSDP Hole 504B) provide additional estimates of the thickness of the extrusive layer and constrain the thickness of the transition region from extrusives to sheeted dikes (∼ 100–200 m). A simple stochastic emplacement model, where the lavas are described by one mean flow length, fits the thickening of the extrusive layer off-axis inferred from the deepening of seismic layer 2A, but the predicted transition from sheeted dikes to extrusives is too thick. In order to match the dimensions and flat-topped shape of the seismic layer 2A boundary as well as the thickness of the extrusive-sheeted dike transition, a bimodal distribution of lava flows is used. Short flows, confined within the axial summit caldera (ASC), build up approximately half the extrusive volume. Occasional voluminous flows spill out of the ASC, or erupt outside of the ASC, and pond at a considerable distance off-axis to build up the remainder of the extrusive section. The upper part of the final extrusive section will be dominated by the off-axis flows, while the lower portions will be primarily composed of short flows erupted within the ASC. Magnetic transition widths predicted from the overlap of lavas (∼ 2 km) in this model are similar to those measured in deep-tow studies. Assuming a smoothing function which acts over one seismic wavelength, the upper crustal velocity structure predicted by the bimodal lava emplacement model is consistent with the shallow seismic velocity structure measured on the EPR. The ages of seafloor lavas in this model are younger than the tectonic spreading model ages by ∼ 30–70 kyr, in agreement with anomalously young lava ages obtained from radioisotope dating of seafloor basalts near the EPR.


Marine Geophysical Researches | 1990

Bathymetry of the mid-atlantic ridge, 24°-31°N: A map series

G. M. Purdy; Jean-Christophe Sempéré; Hans Schouten; D. L. Dubois; R. Goldsmith

This paper presents a series of eleven maps of the bathymetry of a 900 km long section of the crestal region of the Mid-Atlantic Ridge. Along with a twelfth key map, this series defines the morphology of fifteen discrete spreading segments and shows convincingly that no transform faults exist between the Kane and Atlantis fracture zones. The publication of these multi beam bathymetry data with a contour interval of 50 m and at a scale of 30 inches per degree of longitude is intended to allow easy access by a broad community of marine earth scientists to this unique and powerful data set.


Geology | 1980

Zero-offset fracture zones

Hans Schouten; Robert S. White

Normal oceanic crust in the North Atlantic is typically formed in strips 50 to 80 km wide separated by fracture zones. Anomalous seismic crustal structure (less than 10 km wide) is found beneath fracture zones regardless of the amount of offset. Although many of these fracture zones exhibit minor and variable offsets in the seafloor-spreading magnetic lineations, they separate crust with distinctively different basement morphology and magnetic signatures even when there is no offset apparent in the magnetic lineations. The pattern of both the basement relief and the magnetic anomalies provides the evidence for the persistence of minor and variable offset fracture zones formed by the decoupling of adjacent spreading centers over a period of at least 15 m.y. of seafloor spreading.


Marine Geophysical Researches | 1988

Kane Fracture Zone

Brian E. Tucholke; Hans Schouten

The Kane Fracture Zone probably is better covered by geophysical survey data, acquired both by design and incidentally, than any other fracture zone in the North Atlantic Ocean. We have used this data to map the basement morphology of the fracture zone and the adjacent crust for nearly 5700 km, from near Cape Hatteras to the middle of the Mesozoic magnetic anomalies west of Cap Blanc, northwest Africa. We use the trends of the Kane transform valley and its inactive fracture valley to determine the record of plate-motion changes, and we interpret the basement structural data to examine how the Kane transform evolved in response to changes in plate motion. Prior to about 133 Ma the Kane was a small-offset transform and its fracture valley is structurally expressed only as a shallow ( < 0.5 km) trough. In younger crust, the offset may have increased to as much as 190 km (present offset 150 km) and the fracture valley typically is up to 1.2 km deep. This part of the fracture valley records significant changes in direction of relative plate motion (5°–30°) near 102 Ma, 92 Ma, 59 Ma, 22 Ma, and 17 Ma. Each change corresponds to a major reorganization of plate boundaries in areas around the Atlantic, and the fracture-zone orientation appears to be a sensitive recorder of these events.The Kane transform has exhibited characteristic responses to changes in relative plate motion. Counterclockwise plate-motion changes put the left-lateral transform offset into extension, and the response was for ridge tips at the ridge-transform intersections to propagate across the transform valley and against the truncating lithosphere. Heating of this lithosphere appears to have produced uplift and formation of a well developed transverse ridge that bounds the inactive fracture valley on its older side. The propagating ridge tips also rotated toward the transform fault in response to the local stress field, forming prominent hooked ridges that now extend into or across the inactive fracture valley. Clockwise (compressional) changes in relative plate motion produced none of these features, and the resulting fracture valleys typically have a wide-V shape.The Kane transform experienced severe adaptions to the changes in relative plate motion at about 102 Ma (compressional shift) and 92 Ma (extensional shift), and new transform faults were formed in crust outside the contemporary transform valley. Subsequently, the transform offset has been smaller and the rates of change in plate motion have been more gradual, so transform-fault adjustment has been contained within the transform valley. The fracture-valley structure formed during extensional and compressional changes in relative plate motion can be decidedly asymmetrical in conjugate limbs of the fracture zone. This asymmetry appears to be related to the ‘absolute’ motion of the plate boundary with respect to the asthenosphere.


Earth and Planetary Science Letters | 1982

The memory of the accreting plate boundary and the continuity of fracture zones

Hans Schouten; Kim D. Klitgord

A detailed aeromagnetic anomaly map of the Mesozoic seafloor-spreading lineations southwest of Bermuda reveals the dominant magnetic grain of the oceanic crust and the character of the accreting boundary at the time of crustal formation. The magnetic anomaly pattern is that of a series of elongate lobes perpendicular to the fracture zone (flowline) trends. The linear sets of magnetic anomaly peaks and troughs have narrow regions of reduced amplitude anomalies associated with the fracture zones. During the period of Mesozoic geomagnetic polarity reversals (when 1200 km of central North Atlantic seafloor formed), the Atlantic accreting boundary consisted of stationary, elongate, spreading center cells that maintained their independence even though sometimes only minor spatial offsets existed between cells. Normal oceanic crustal structure was formed in the spreading center cells, but structural anomalies and discontinuities characteristic of fracture zones were formed at their boundaries, which parallel flowlines of Mesozoic relative plate motion in the central North Atlantic. We suggest that the memory for a stationary pattern of independent spreading center cells resides in the young brittle lithosphere at the accreting boundary where the lithosphere is weakest; here, each spreading center cell independently goes through its cylce of stress buildup, stress release, and crustal accretion, after which its memory is refreshed. The temporal offset between the peaks of the accretionary activity that takes place within each cell may provide the mechanism for maintaining the independence of adjacent spreading center cells through times when no spatial offset between the cells exists.


Earth and Planetary Science Letters | 1999

Central anomaly magnetization high: constraints on the volcanic construction and architecture of seismic layer 2A at a fast-spreading mid-ocean ridge, the EPR at 9°30′–50′N

Hans Schouten; Maurice A. Tivey; Daniel J. Fornari; James R. Cochran

Abstract The central anomaly magnetization high (CAMH) is a zone of high crustal magnetization centered on the axis of the East Pacific Rise (EPR) and many other segments of the global mid-ocean ridge (MOR). The CAMH is thought to reflect the presence of recently emplaced and highly magnetic lavas. Forward models show that the complicated character of the near-bottom CAMH can be successfully reproduced by the convolution of a lava deposition distribution with a lava magnetization function that describes the variation in lava magnetization intensity with age. This lava magnetization function is the product of geomagnetic paleofield intensity, which has increased by a factor of 2 over the last 40 kyr, and low-temperature alteration which decreases the remanence of lava with exposure to seawater. The success of the forward modeling justifies the inverse approach: deconvolution of the magnetic data for lava distribution and integration of that distribution for magnetic layer thickness. This approach is tested on two near-bottom magnetic profiles AL2767 and AL2771, collected using Alvin across the EPR axis at 9°31′N and 9°50′N. Our analysis of these data produces an estimate of the relative thickness of the magnetic lava layer which is remarkably consistent with existing multichannel estimates of layer 2A thickness from lines CDP31 and CDP27. The similarity between magnetic layer and seismic layer 2A at the 9°–10°N segment of the EPR crest provides independent support to the notion that seismic layer 2A in young oceanic crust represents the highly magnetic lava layer, and that the velocity gradient at the base of layer 2A is related to the increasing number of higher-velocity dikes with depth in the lava–dike transition zone. The near-bottom magnetic anomaly character of the CAMH is a powerful indicator of the emplacement history of upper crust at MORs which allows prediction of the relative thickness and architecture of the extrusive lavas independent of other constraints.


Journal of Geophysical Research | 1993

Edge-driven microplate kinematics

Hans Schouten; Kim D. Klitgord; David G. Gallo

It is known from plate tectonic reconstructions that oceanic microplates undergo rapid rotation about a vertical axis and that the instantaneous rotation axes describing the microplates motion relative to the bounding major plates are frequently located close to its margins with those plates, close to the tips of propagating rifts. We propose a class of edge-driven block models to illustrate how slip across the microplate margins, block rotation, and propagation of rifting may be related to the relative motion of the plates on either side. An important feature of these edge-driven models is that the instantaneous rotation axes are always located on the margins between block and two bounding plates. According to those models the pseudofaults or traces of disrupted seafloor resulting from the propagation of rifting between microplate and major plates may be used independently to approximately trace the continuous kinematic evolution of the microplate back in time. Pseudofault geometries and matching rotations of the Easter microplate show that for most of its 5 m.y. history, block rotation could be driven by the drag of the Nazca and Pacific plates on the microplates edges rather than by a shear flow of mantle underneath.


Geological Society, London, Special Publications | 2003

A general model of arc-continent collision and subduction polarity reversal from Taiwan and the Irish Caledonides

Peter D. Clift; Hans Schouten; Amy E. Draut

Abstract The collision of the Luzon Arc with southern China represents the best example of arc-continent collision in the modern oceans, and compares closely with the Early Ordovician accretion of the Lough Nafooey arc of Connemara, Ireland, to the passive margin of Laurentia. We propose a general model for steady-state arc-continent collision in which arc crust is progressively added to a passive margin during a process of compression, metamorphism and magmatism lasting 3–10 Ma at any one location on the margin. Depending on the obliquity of the angle of collision, the timing of active collision may be diachronous and long-lived along the margin. Magmatism accompanying accretion can be more enriched in incompatible trace elements than average continental crust, contrasting with more depleted magmatism prior to collision. Accretion of a mixture of depleted and enriched arc lithologies to the continental margin allows the continental crust to grow through time by arc-passive margin collision events. During the collision the upper and middle arc crust are detached from the depleted ultramafic lower crust, which is subducted along with the mantle lithosphere on which the arc was founded. Rapid (2–3 Ma) exhumation and gravitational collapse of the collisional orogen forms the Okinawa and South Mayo Troughs in Taiwan and western Ireland, respectively. These basins are filled by detritus eroded from the adjacent collision zone. During subsequent subduction polarity reversal, continuous tearing and retreat of the oceanic lithosphere along the former continent-ocean transition provides space for the new subducting oceanic plate to descend without need for breaking of the original slab.

Collaboration


Dive into the Hans Schouten's collaboration.

Top Co-Authors

Avatar

Maurice A. Tivey

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Deborah K. Smith

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Henry J. B. Dick

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Kim D. Klitgord

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Fornari

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

J. Escartin

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar

Peter D. Clift

Louisiana State University

View shared research outputs
Top Co-Authors

Avatar

Amy E. Draut

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge