Hans Stange
Boehringer Ingelheim
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans Stange.
Journal of Medicinal Chemistry | 2010
Norbert Höfgen; Hans Stange; Rudolf Schindler; Hans-Joachim Lankau; Christian Grunwald; Barbara Langen; Ute Egerland; Peter Tremmel; Menelas N. Pangalos; Karen L. Marquis; Thorsten Hage; Boyd L. Harrison; Michael S. Malamas; Nicholas J. Brandon; Thomas Kronbach
Novel imidazo[1,5-a]pyrido[3,2-e]pyrazines have been synthesized and characterized as both potent and selective phosphodiesterase 10A (PDE10A) inhibitors. For in vitro characterization, inhibition of PDE10A mediated cAMP hydrolysis was used and a QSAR model was established to analyze substitution effects. The outcome of this analysis was complemented by the crystal structure of PDE10A in complex with compound 49. Qualitatively new interactions between inhibitor and binding site were found, contrasting with previously published crystal structures of papaverine-like inhibitors. In accordance with the known antipsychotic potential of PDE10A inhibitors, MK-801 induced stereotypy and hyperactivity in rats were reversed by selected compounds. Thus, a promising compound class has been identified for the treatment of schizophrenia that could circumvent side effects connected with current therapies.
Journal of Medicinal Chemistry | 2011
Michael S. Malamas; Yike Ni; James Joseph Erdei; Hans Stange; Rudolf Schindler; Hans-Joachim Lankau; Christian Grunwald; Kristi Fan; Kevin Parris; Barbara Langen; Ute Egerland; Thorsten Hage; Karen L. Marquis; Steve Grauer; Rachel Navarra; Radka Graf; Boyd L. Harrison; Albert Jean Robichaud; Thomas Kronbach; Menelas N. Pangalos; Norbert Hoefgen; Nicholas J. Brandon
The identification of highly potent and orally active phenylpyrazines for the inhibition of PDE10A is reported. The new analogues exhibit subnanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired druglike properties. Employing structure-based drug design approaches, we methodically explored two key regions of the binding pocket of the PDE10A enzyme to alter the planarity of the parent compound 1 and optimize its affinity for PDE10A. Bulky substituents at the C9 position led to elimination of the mutagenicity of 1, while a crucial hydrogen bond interaction with Glu716 markedly enhanced its potency and selectivity. A systematic assessment of the ADME and PK properties of the new analogues led to druglike development candidates. One of the more potent compounds, 96, displayed an IC(50) for PDE10A of 0.7 nM and was active in predictive antipsychotic animal models.
Psychopharmacology | 2012
Barbara Langen; Rita Dost; Ute Egerland; Hans Stange; Norbert Hoefgen
RationalNegative symptoms of schizophrenia are insufficiently treated by current antipsychotics. However, research is limited by the lack of validated models. Clinical data indicate that phencyclidine (PCP) abuse may induce symptoms resembling negative symptoms in humans. Based on that, Noda et al. proposed a model of PCP-induced increase of immobility in the forced swim test in mice as a model of depression-like negative symptoms of schizophrenia.ObjectivesThe aim of the study was to evaluate the effect of phosphodiesterase 10A (PDE10A) inhibition in this model which was modified by using MK-801 instead of PCP.MethodsIncrease of immobility in the forced swim test was induced by repeated MK-801 treatment followed by a 2-day washout in mice. The effect of haloperidol, clozapine, risperidone and PDE10A inhibitors was evaluated in this model, on open-field activity and acute MK-801-induced hyperactivity.ResultsRepeated MK-801 treatment significantly increased immobility in the forced swim test without affecting open-field activity. It induced hypersensitivity to the dopamine D1 agonist A-68930, suggesting a hypofunction of the D1 pathway. The increase of immobility is reversed by clozapine and PDE10A inhibitors, but not by haloperidol. Clozapine and the PDE10A inhibitors did not enhance activity at effective doses.ConclusionThe possibility to substitute PCP by MK-801 in this model indicates that the effect is mediated by their common mechanism of NMDA antagonism. PDE10A inhibitors similar to clozapine significantly antagonize the increase of immobility, suggesting a therapeutic potential for the treatment of negative symptoms. However, further validation of the model is necessary.
Bioorganic & Medicinal Chemistry Letters | 2012
Michael S. Malamas; Hans Stange; Rudolf Schindler; Hans-Joachim Lankau; Christian Grunwald; Barbara Langen; Ute Egerland; Thorsten Hage; Yike Ni; James Joseph Erdei; Kristi Fan; Kevin Parris; Karen L. Marquis; Steve Grauer; Rachel Navarra; Radka Graf; Boyd L. Harrison; Albert J. Robichaud; Thomas Kronbach; Menelas N. Pangalos; Nicholas J. Brandon; Norbert Hoefgen
The identification of highly potent and orally active triazines for the inhibition of PDE10A is reported. The new analogs exhibit low-nanomolar potency for PDE10A, demonstrate high selectivity against all other members of the PDE family, and show desired drug-like properties. Employing structure-based drug design approaches, we investigated the selectivity of PDE10A inhibitors against other known PDE isoforms, by methodically exploring the various sub-regions of the PDE10A ligand binding pocket. A systematic assessment of the ADME and pharmacokinetic properties of the newly synthesized compounds has led to the design of drug-like candidates with good brain permeability and desirable drug kinetics (t(1/2), bioavailability, clearance). Compound 66 was highly potent for PDE10A (IC(50)=1.4 nM), demonstrated high selectivity (>200×) for the other PDEs, and was efficacious in animal models of psychoses; reversal of MK-801 induced hyperactivity (MED=0.1mg/kg) and conditioned avoidance responding (CAR; ID(50)=0.2 mg/kg).
Archive | 2007
Norbert Höfgen; Hans Stange; Barbara Langen; Ute Egerland; Rudolf Schindler; Thomas Pfeifer; Chris Rundfeldt
Archive | 2008
Michael S. Malamas; Yike Ni; James Joseph Erdei; Norbert Höfgen; Hans Stange; Rudolf Schindler; Ute Egerland; Barbara Langen
Archive | 2009
Hans Stange; Barbara Langen; Ute Egerland; Norbert Hoefgen; Martina Priebs; Michael S. Malamas; James Joseph Erdei; Yike Ni
Archive | 2008
Michael S. Malamas; Yike Ni; James Joseph Erdei; Hans Stange; Rudolf Schindler; Norbert Höfgen; Ute Egerland; Barbara Langen
Archive | 2009
Hans Stange; Barbara Langen; Ute Egerland; Norbert Hoefgen; Martina Priebs; Michael S. Malamas; James Joseph Erdei; Yike Ni
Archive | 2012
Hans-Joachim Lankau; Barbara Langen; Christian Grunwald; Norbert Hoefgen; Hans Stange; Rita Dost; Ure Egerland