Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans Ulrich Rothen is active.

Publication


Featured researches published by Hans Ulrich Rothen.


Anesthesiology | 1995

Influence of gas composition on recurrence of atelectasis after a reexpansion maneuver during general anesthesia

Hans Ulrich Rothen; B. Sporre; G. Engberg; G. Wegenius; Marieann Högman; Göran Hedenstierna

Background Atelectasis, an important cause of impaired gas exchange during general anesthesia, may be eliminated by a vital capacity maneuver. However, it is not clear whether such a maneuver will have a sustained effect. The aim of this study was to determine the impact of gas composition on reappearance of atelectasis and impairment of gas exchange after a vital capacity maneuver. Methods A consecutive sample of 12 adults with healthy lungs who were scheduled for elective surgery were studied. Thirty minutes after induction of anesthesia with fentanyl and propofol, the lungs were hyperinflated manually up to an airway pressure of 40 cmH2 O. FI sub O2 was either kept at 0.4 (group 1, n = 6) or changed to 1.0 (group 2, n = 6) during the recruitment maneuver. Atelectasis was assessed by computed tomography. The amount of dense areas was measured at end-expiration in a transverse plane at the base of the lungs. The ventilation-perfusion distributions (V with dot A/Q with dot) were estimated with the multiple inert gas elimination technique. The static compliance of the total respiratory system (Crs) was measured with the flow interruption technique. Results In group 1 (FIO2 = 0.4), the recruitment maneuver virtually eliminated atelectasis for at least 40 min, reduced shunt (V with dot A/Q with dot < 0.005), and increased at the same time the relative perfusion to poorly ventilated lung units (0.005 < V with dot A/Q with dot < 0.1; mean values are given). The arterial oxygen tension (PaO2) increased from 137 mmHg (18.3 kPa) to 163 mmHg (21.7 kPa; before and 40 min after recruitment, respectively; P = 0.028). In contrast to these findings, atelectasis recurred within 5 min after recruitment in group 2 (FIO2 = 1.0). Comparing the values before and 40 min after recruitment, all parameters of V with dot A/Q with dot were unchanged. In both groups, Crs increased from 57.1/55.0 ml *symbol* cmH2 O sup -1 (group 1/group 2) before to 70.1/67.4 ml *symbol* cmH2 O sup -1 after the recruitment maneuver. Crs showed as low decrease thereafter (40 min after recruitment: 61.4/60.0 ml *symbol* cmH2 O sup -1), with no difference between the two groups. Conclusions The composition of inspiratory gas plays an important role in the recurrence of collapse of previously reexpanded atelectatic lung tissue during general anesthesia in patients with healthy lungs. The reason for the instability of these lung units remains to be established. The change in the amount of atelectasis and shunt appears to be independent of the change in the compliance of the respiratory system.


Journal of Clinical Monitoring and Computing | 2000

Atelectasis formation during anesthesia: causes and measures to prevent it.

Göran Hedenstierna; Hans Ulrich Rothen

Pulmonary gas exchange is regularly impaired during general anaesthesia with mechanical ventilation. This results in decreased oxygenation of blood. A major cause is collapse of lung tissue (atelectasis), which can be demonstrated by computed tomography but not by conventional chest x-ray. Collapsed lung tissue is present in 90% of all subjects, both during spontaneous breathing and after muscle paralysis, and whether intravenous or inhalational anaesthetics are used. There is a correlation between the amount of atelectasis and pulmonary shunt. Shunt does not increase with age. In obese patients, larger atelectatic areas are present than in lean ones. Finally, patients with chronic obstructive lung disease may show less or even no atelectasis. There are different procedures that can be used in order to prevent atelectasis or to reopen collapsed lung tissue. The application of positive end-expiratory pressure (PEEP) has been tested in several studies. On the average, arterial oxygenation does not improve markedly, and atelectasis may persist. Further, reopened lung units re-collapse rapidly after discontinuation of PEEP. Inflation of the lungs to an airway pressure of 40 cm H2O, maintained for 7–8 seconds (recruitment or “vital capacity” manoeuvre), re-expands all previously collapsed lung tissue. During induction of anaesthesia, the use of a gas mixture, that includes a poorly absorbed gas such as nitrogen, may prevent the early formation of atelectasis. During ongoing anaesthesia, pulmonary collapse reappears slowly if a low fraction of oxygen in nitrogen is used for the ventilation of the lungs after a previous VC-manoeuvre. On the other hand, ventilation of the lungs with pure oxygen results in a rapid reappearance of atelectasis. Thus, ventilation during anaesthesia should be done if possible with a moderate fraction of inspired oxygen (FIO2, e.g. 0.3–0.4). Alternatively, if the lungs are ventilated with a high inspiratory fraction of oxygen, the use of PEEP may be considered. In summary, atelectasis is present in most humans during anaesthesia and is a major cause of impaired oxygenation. Avoiding high fractions of oxygen in inspired gas during induction and maintenance of anaesthesia may prevent formation of atelectasis. Finally, intermittent “vital capacity”-manoeuvres together with PEEP reduces the amount of atelectasis and pulmonary shunt.


Acta Anaesthesiologica Scandinavica | 1995

Reexpansion of atelectasis during general anaesthesia may have a prolonged effect.

Hans Ulrich Rothen; B. Sporre; G. Engberg; G. Wegenius; Göran Hedenstierna

Pulmonary atelectasis, as found during general anaesthesia, may be reexpanded by hyper‐inflation of the lungs. The purpose of this study was to determine whether such a recruitment is maintained and whether this is accompanied by an improved gas exchange.


Acta Anaesthesiologica Scandinavica | 1996

Atelectasis and pulmonary shunting during induction of general anaesthesia ‐ can they be avoided?

Hans Ulrich Rothen; B. Sporre; G. Engberg; G. Wegenius; A. Reber; Göran Hedenstierna

Background: Gas exchange is regularly impaired during general anaesthesia with mechanical ventilation. A major cause of this disorder appears to be atelectasis and consequently pulmonary shunt. After re‐expansion, atelectasis reappears very slowly if 30% oxygen in nitrogen is used, but much faster if 100% oxygen is used. The aim of the present study‐was to evaluate if early formation of atelectasis and pulmonary shunt may be avoided if the lungs are ventilated with 30% oxygen in nitrogen instead of 100% oxygen during the induction of general anaesthesia.


Acta Anaesthesiologica Scandinavica | 2003

Resource use in the ICU: short‐ vs. long‐term patients*

K. Stricker; Hans Ulrich Rothen; Jukka Takala

Background: Intensive care medicine uses a disproportionate share of medical resources, and little is known about the distribution of resources between different patient groups.


Anesthesia & Analgesia | 2004

Changes in splanchnic circulation during an alveolar recruitment maneuver in healthy porcine lungs

Silvia Nunes; Hans Ulrich Rothen; Lukas Brander; Jukka Takala; Stephan M. Jakob

Recruitment maneuvers (RM) are advocated as a complement to mechanical ventilation during anesthesia and in acute lung injury. However, they produce high intrathoracic pressures and volumes that may compromise hemodynamics. Our aim was to analyze the effect of a RM on hemodynamics in 10 anesthetized pigs. We assessed carotid, pulmonary, femoral, and hepatic arterial pressures, hepatic and portal venous pressures, total splanchnic (celiac trunk + superior mesenteric artery), hepatic, splenic, renal, and carotid arterial flows, and portal venous flow. We recorded hemodynamics, respiratory mechanics and blood gases before and at 8 min after RM (sustained inflation to 40 cm H2O of airway pressure lasting 20 s). Hemodynamics were also measured during RM, and at 1, 3, and 5 min after RM. All flows (P = 0.030) and arterial pressures (P ≤ 0.048) decreased during RM, whereas venous pressures increased (P = 0.030). Flows and pressures returned to 75%–109% of baseline immediately after RM. Total splanchnic, renal and portal flows remained decreased at 8 min after RM (P ≤ 0.042). Oxygenation did not change, and respiratory mechanics improved after the RM. RM produced a marked, though transitory, impairment of blood flow in all studied vessels. Despite prompt partial recovery, total splanchnic circulation remained reduced at 8 min after RM. This residual decrease may present a risk in conditions with markedly compromised circulatory reserves.


Acta Anaesthesiologica Scandinavica | 2005

Does ICU length of stay influence quality of life

K. Stricker; R. Cavegn; Jukka Takala; Hans Ulrich Rothen

Background:  Patients with prolonged stay in the intensive care unit (ICU) use a disproportionate share of resources. However, it is not known if such treatment results in impaired quality of life (QOL) as compared to patients with a short length of stay (LOS) when taking into account the initial severity of illness.


Comprehensive Physiology | 2012

Respiratory Function During Anesthesia: Effects on Gas Exchange

Göran Hedenstierna; Hans Ulrich Rothen

Anaesthesia causes a respiratory impairment, whether the patient is breathing spontaneously or is ventilated mechanically. This impairment impedes the matching of alveolar ventilation and perfusion and thus the oxygenation of arterial blood. A triggering factor is loss of muscle tone that causes a fall in the resting lung volume, functional residual capacity. This fall promotes airway closure and gas adsorption, leading eventually to alveolar collapse, that is, atelectasis. The higher the oxygen concentration, the faster will the gas be adsorbed and the aleveoli collapse. Preoxygenation is a major cause of atelectasis and continuing use of high oxygen concentration maintains or increases the lung collapse, that typically is 10% or more of the lung tissue. It can exceed 25% to 40%. Perfusion of the atelectasis causes shunt and cyclic airway closure causes regions with low ventilation/perfusion ratios, that add to impaired oxygenation. Ventilation with positive end-expiratory pressure reduces the atelectasis but oxygenation need not improve, because of shift of blood flow down the lung to any remaining atelectatic tissue. Inflation of the lung to an airway pressure of 40 cmH2O recruits almost all collapsed lung and the lung remains open if ventilation is with moderate oxygen concentration (< 40%) but recollapses within a few minutes if ventilation is with 100% oxygen. Severe obesity increases the lung collapse and obstructive lung disease and one-lung anesthesia increase the mismatch of ventilation and perfusion. CO2 pneumoperitoneum increases atelectasis formation but not shunt, likely explained by enhanced hypoxic pulmonary vasoconstriction by CO2. Atelectasis may persist in the postoperative period and contribute to pneumonia.


Current Opinion in Critical Care | 2010

Family satisfaction with critical care: measurements and messages.

Hans Ulrich Rothen; Kay Stricker; Daren K. Heyland

Purpose of reviewFamily satisfaction in the ICU reflects the extent to which perceived needs and expectations of family members of critically ill patients are met by healthcare professionals. Here, we present recently developed tools to assess family satisfaction, with a special focus on their psychometric properties. Assessing family satisfaction, however, is not of much use if it is not followed by interpretation of the results and, if needed, consecutive measures to improve care of the patients and their families, or improvement in communication and decision-making. Accordingly, this review will outline recent findings in this field. Finally, possible areas of future research are addressed. Recent findingsTo assess family satisfaction in the ICU, several domains deserve attention. They include, among others, care of the patient, counseling and emotional support of family members, information and decision-making. Overall, communication between physicians or nurses and members of the family remains a key topic, and there are many opportunities to improve. They include not only communication style, timing and appropriate wording but also, for example, assessments to see if information was adequately received and also understood. Whether unfulfilled needs of individual members of the family or of the family as a social system result in negative long-term sequels remains an open question. SummaryAssessing and analyzing family satisfaction in the ICU ultimately will support healthcare professionals in their continuing effort to improve care of critically ill patients and their families.


Journal of Applied Physiology | 2013

Multiple inert gas elimination technique by micropore membrane inlet mass spectrometry—a comparison with reference gas chromatography

Moritz Kretzschmar; Thomas F. Schilling; Andreas Vogt; Hans Ulrich Rothen; João Batista Borges; Thomas Hachenberg; Anders Larsson; James E. Baumgardner; Göran Hedenstierna

The mismatching of alveolar ventilation and perfusion (VA/Q) is the major determinant of impaired gas exchange. The gold standard for measuring VA/Q distributions is based on measurements of the elimination and retention of infused inert gases. Conventional multiple inert gas elimination technique (MIGET) uses gas chromatography (GC) to measure the inert gas partial pressures, which requires tonometry of blood samples with a gas that can then be injected into the chromatograph. The method is laborious and requires meticulous care. A new technique based on micropore membrane inlet mass spectrometry (MMIMS) facilitates the handling of blood and gas samples and provides nearly real-time analysis. In this study we compared MIGET by GC and MMIMS in 10 piglets: 1) 3 with healthy lungs; 2) 4 with oleic acid injury; and 3) 3 with isolated left lower lobe ventilation. The different protocols ensured a large range of normal and abnormal VA/Q distributions. Eight inert gases (SF6, krypton, ethane, cyclopropane, desflurane, enflurane, diethyl ether, and acetone) were infused; six of these gases were measured with MMIMS, and six were measured with GC. We found close agreement of retention and excretion of the gases and the constructed VA/Q distributions between GC and MMIMS, and predicted PaO2 from both methods compared well with measured PaO2. VA/Q by GC produced more widely dispersed modes than MMIMS, explained in part by differences in the algorithms used to calculate VA/Q distributions. In conclusion, MMIMS enables faster measurement of VA/Q, is less demanding than GC, and produces comparable results.

Collaboration


Dive into the Hans Ulrich Rothen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kay Stricker

University Hospital of Bern

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge