Hans van Toor
Erasmus University Rotterdam
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans van Toor.
The New England Journal of Medicine | 2008
José C. Moreno; Willem Klootwijk; Hans van Toor; Graziella Pinto; Mariella D'Alessandro; Aubène Lèger; David Goudie; Michel Polak; Annette Grüters; Theo J. Visser
DEHAL1 has been identified as the gene encoding iodotyrosine deiodinase in the thyroid, where it controls the reuse of iodide for thyroid hormone synthesis. We screened patients with hypothyroidism who had features suggestive of an iodotyrosine deiodinase defect for mutations in DEHAL1. Two missense mutations and a deletion of three base pairs were identified in four patients from three unrelated families; all the patients had a dramatic reduction of in vitro activity of iodotyrosine deiodinase. Patients had severe goitrous hypothyroidism, which was evident in infancy and childhood. Two patients had cognitive deficits due to late diagnosis and treatment. Thus, mutations in DEHAL1 led to a deficiency in iodotyrosine deiodinase in these patients. Because infants with DEHAL1 defects may have normal thyroid function at birth, they may be missed by neonatal screening programs for congenital hypothyroidism.
The Journal of Clinical Endocrinology and Metabolism | 2002
Monique H. A. Kester; Sema Bulduk; Hans van Toor; Dick Tibboel; Walter Meinl; Hansruedi Glatt; Charles N. Falany; Michael W.H. Coughtrie; A. Gerlienke Schuur; Abraham Brouwer; Theo J. Visser
Polyhalogenated aromatic hydrocarbons (PHAHs), such as polychlorinated dibenzo-p-dioxins and dibenzofurans, polybrominated diphenylethers, and bisphenol A derivatives are persistent environmental pollutants, which are capable of interfering with reproductive and endocrine function in birds, fish, reptiles, and mammals. PHAHs exert estrogenic effects that may be mediated in part by their hydroxylated metabolites (PHAH-OHs), the mechanisms of which remain to be identified. PHAH-OHs show low affinity for the ER. Alternatively, they may exert their estrogenic effects by inhibiting E2 metabolism. As sulfation of E2 by estrogen sulfotransferase (SULT1E1) is an important pathway for E2 inactivation, inhibition of SULT1E1 may lead to an increased bioavailability of estrogens in tissues expressing this enzyme. Therefore, we studied the possible inhibition of human SULT1E1 by hydroxylated PHAH metabolites and the sulfation of the different compounds by SULT1E1. We found marked inhibition of SULT1E1 by various PHAH-OHs, in particular by compounds with two adjacent halogen substituents around the hydroxyl group that were effective at (sub)nanomolar concentrations. Depending on the structure, the inhibition is primarily competitive or noncompetitive. Most PHAH-OHs are also sulfated by SULT1E1. We also investigated the inhibitory effects of the various PHAH-OHs on E2 sulfation by human liver cytosol and found that the effects were strongly correlated with their inhibitions of recombinant SULT1E1 (r = 0.922). Based on these results, we hypothesize that hydroxylated PHAHs exert their estrogenic effects at least in part by inhibiting SULT1E1-catalyzed E2 sulfation.
Neuroendocrinology | 1992
Jan M.M. Rondeel; Rogier Heide; Wim J. de Greef; Hans van Toor; Goedele A.C. van Haasteren; W. Klootwijk; Theo J. Visser
Effects of starvation on thyroid function were studied in 5- to 6-week-old (R x U) F1 rats. Starvation lowered plasma TSH in female, but not in male rats. Plasma T4 and T3 levels decreased, whereas the dialysable T4 fraction increased during starvation. Free T4 (FT4) levels decreased rapidly in females, but only after prolonged fasting in male rats. Glucose decreased, and free fatty acid levels increased during starvation. Peripheral TRH levels did not change during food deprivation. Since effects of starvation were most apparent in young female rats, such rats were used to study hypothalamic TRH release during starvation and subsequent refeeding. Basal in vitro hypothalamic TRH secretion was less in starved rats than in control or refed animals. In vitro hypothalamic TRH release in medium with 56 mM KCl increased 3-fold compared to basal release, and in these depolarization conditions TRH release was similar between hypothalami from control, starved and refed rats. In rats starved for 2 days, TRH level in hypophysial portal blood was lower than that of controls. Thus, diminished thyroid function during starvation may at least in part be caused by a reduced hypothalamic TRH release.
Clinical Endocrinology | 2013
W. Edward Visser; Paul Vrijmoeth; Frank E. Visser; W.F.M. Arts; Hans van Toor; Theo J. Visser
Monocarboxylate transporter 8 (MCT8) is an essential thyroid hormone (TH) transporter as humans with MCT8 mutations have severe neurological and endocrine abnormalities. The objectives are (i) to identify novel MCT8 mutations and (ii) to assess their functional relevance; (iii) to describe the effects of block‐and‐replace treatment in an MCT8 patient.
Clinical Endocrinology | 1994
Chen-Fee Lim; Roel Docter; Eric P. Krenning; Hans van Toor; Bert F. Bernard; Marion de Jong; Georg Hennemann
OBJECTIVE Inhibitors of cellular T4 transport leading to diminished plasma T3 production have been identified as 3‐carboxy‐4‐methyl‐5‐propyl‐2‐furanpropanoic acid (CMPF) and indoxyl sulphate in uraemia and bilirubin and non‐esterified fatty acids (NEFA) in critically ill patients with hyperbilirubinaemia. We question whether other factors are responsible for the altered thyroid hormone parameters observed in mild illness and during calorie restriction.
Clinical Endocrinology | 2007
Robin P. Peeters; Wendy M. van der Deure; Annewieke W. van den Beld; Hans van Toor; Steven W. J. Lamberts; Joop A. M. J. L. Janssen; André G. Uitterlinden; Theo J. Visser
Background Variations in thyroid function within the normal range are associated with differences in metabolism and body composition. For instance, TSH is positively associated with body mass index (BMI). This could be due to alterations in thyroid hormone activity, or to direct effects of TSH, as the TSH receptor (TSHR) is also expressed in adipose tissue. The TSHR‐Asp727Glu polymorphism is associated with lower serum TSH levels in vivo. In this study, we analysed whether serum thyroid parameters and the TSHR‐Asp727Glu polymorphism were associated with glucose metabolism and insulin resistance. In addition, we analysed the Thr92Ala polymorphism in the type 2 deiodinase (D2), which was recently associated with insulin resistance.
The Journal of Clinical Endocrinology and Metabolism | 2012
Annemieke J. Lem; Yolanda B. de Rijke; Hans van Toor; Maria de Ridder; Theo J. Visser; Anita Hokken-Koelega
CONTEXT Age-appropriate reference ranges for thyroid hormones are required for detecting pediatric thyroid dysfunction. Data on thyroid hormones and peripheral thyroid metabolism in short children born small for gestational age (SGA) before and during GH treatment are lacking. OBJECTIVES Our objectives were to obtain pediatric thyroid hormone reference ranges; to investigate thyroid hormones in short SGA children before puberty, during puberty, and during postponement of puberty by GnRH analog; and to evaluate thyroid hormones during GH treatment. PATIENTS AND DESIGN In 512 healthy children (225 females; 0-18 yr), free T(4) (FT(4)), TSH, total T(4), T(3), rT(3), and T(4)-binding globulin were determined. Reference ranges were calculated using the linearity, median, and skewness method. In 125 short SGA children (62 females; mean age 11.3 yr), thyroid hormones were analyzed before and after 2 yr of GH treatment and additional GnRH analog. RESULTS Thyroid references showed wide ranges postnatally and age-specific patterns thereafter, similar in boys and girls. Untreated short SGA children had similar FT(4) and T(4) levels as the reference population but significantly higher T(3), rT(3), and T(4)-binding globulin levels. During puberty and during GH treatment, FT(4) and rT(3) significantly decreased, whereas T(3) significantly increased. CONCLUSION Age-specific thyroid reference ranges are presented. Puberty and GH treatment both induce changes in peripheral thyroid metabolism, resulting in more biologically active T(3) at the expense of less inactive rT(3), possibly mediated by IGF-I. GH treatment induces altered peripheral thyroid metabolism but does not result in thyroid dysfunction.
PLOS ONE | 2016
W. Edward Visser; Cíntia R. Bombardieri; Chantal Zevenbergen; Sander Barnhoorn; Alexandre Ottaviani; Ingrid van der Pluijm; Renata M. C. Brandt; Ellen Kaptein; Ramona van Heerebeek; Hans van Toor; George A. Garinis; Robin P. Peeters; Marco Medici; Willy van Ham; Wilbert P. Vermeij; Monique C. de Waard; Ronald R. de Krijger; Anita Boelen; Joan Kwakkel; John J. Kopchick; Edward O. List; Joost P.M. Melis; Veerle Darras; Martijn E.T. Dollé; Gijsbertus T. J. van der Horst; Jan H.J. Hoeijmakers; Theo J. Visser
DNA damage contributes to the process of aging, as underscored by premature aging syndromes caused by defective DNA repair. Thyroid state changes during aging, but underlying mechanisms remain elusive. Since thyroid hormone (TH) is a key regulator of metabolism, changes in TH signaling have widespread effects. Here, we reveal a significant common transcriptomic signature in livers from hypothyroid mice, DNA repair-deficient mice with severe (Csbm/m/Xpa-/-) or intermediate (Ercc1-/Δ-7) progeria and naturally aged mice. A strong induction of TH-inactivating deiodinase D3 and decrease of TH-activating D1 activities are observed in Csbm/m/Xpa-/- livers. Similar findings are noticed in Ercc1-/Δ-7, in naturally aged animals and in wild-type mice exposed to a chronic subtoxic dose of DNA-damaging agents. In contrast, TH signaling in muscle, heart and brain appears unaltered. These data show a strong suppression of TH signaling in specific peripheral organs in premature and normal aging, probably lowering metabolism, while other tissues appear to preserve metabolism. D3-mediated TH inactivation is unexpected, given its expression mainly in fetal tissues. Our studies highlight the importance of DNA damage as the underlying mechanism of changes in thyroid state. Tissue-specific regulation of deiodinase activities, ensuring diminished TH signaling, may contribute importantly to the protective metabolic response in aging.
Clinical Endocrinology | 2011
Willem Edward Visser; Yolanda B. de Rijke; Hans van Toor; Theo J. Visser
Objective Abnormalities in thyroid state may affect development and function of the brain and result in mental retardation (MR). Thyroid parameters have not been systematically investigated in institutionalized MR subjects. The objective is to measure thyroid parameters in a novel cohort of 946 institutionalized subjects.
The Journal of Clinical Endocrinology and Metabolism | 2003
Robin P. Peeters; Hans van Toor; Willem Klootwijk; Yolanda B. de Rijke; George G. J. M. Kuiper; André G. Uitterlinden; Theo J. Visser