Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hans von Döhren is active.

Publication


Featured researches published by Hans von Döhren.


Chemistry & Biology | 2000

Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system

Daniel Tillett; Elke Dittmann; Marcel Erhard; Hans von Döhren; Thomas Börner; Brett A. Neilan

BACKGROUND Blooms of toxic cyanobacteria (blue-green algae) have become increasingly common in the surface waters of the world. Of the known toxins produced by cyanobacteria, the microcystins are the most significant threat to human and animal health. These cyclic peptides are potent inhibitors of eukaryotic protein phosphatases type 1 and 2A. Synthesized nonribosomally, the microcystins contain a number of unusual amino acid residues including the beta-amino polyketide moiety Adda (3-amino-9-methoxy-2,6, 8-trimethyl-10-phenyl-4,6-decadienoic acid). We have characterized the microcystin biosynthetic gene cluster from Microcystis aeruginosa PCC7806. RESULTS A cluster spanning 55 kb, composed of 10 bidirectionally transcribed open reading frames arranged in two putative operons (mcyA-C and mcyD-J), has been correlated with microcystin formation by gene disruption and mutant analysis. Of the 48 sequential catalytic reactions involved in microcystin synthesis, 45 have been assigned to catalytic domains within six large multienzyme synthases/synthetases (McyA-E, G), which incorporate the precursors phenylacetate, malonyl-CoA, S-adenosyl-L-methionine, glutamate, serine, alanine, leucine, D-methyl-isoaspartate, and arginine. The additional four monofunctional proteins are putatively involved in O-methylation (McyJ), epimerization (McyF), dehydration (McyI), and localization (McyH). The unusual polyketide amino acid Adda is formed by transamination of a polyketide precursor as enzyme-bound intermediate, and not released during the process. CONCLUSIONS This report is the first complete description of the biosynthesis pathway of a complex cyanobacterial metabolite. The enzymatic organization of the microcystin assembly represents an integrated polyketide-peptide biosynthetic pathway with a number of unusual structural and enzymatic features. These include the integrated synthesis of a beta-amino-pentaketide precursor and the formation of beta- and gamma-carboxyl-peptide bonds, respectively. Other features of this complex system also observed in diverse related biosynthetic clusters are integrated C- and N-methyltransferases, an integrated aminotransferase, and an associated O-methyltransferase and a racemase acting on acidic amino acids.


Nature Biotechnology | 2008

Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum

Marco van den Berg; Richard Albang; Kaj Albermann; Jonathan H. Badger; Jean-Marc Daran; Arnold J. M. Driessen; Carlos García-Estrada; Natalie D. Fedorova; Diana M. Harris; Wilbert H. M. Heijne; Vinita Joardar; Jan A. K. W. Kiel; Andriy Kovalchuk; Juan F. Martín; William C. Nierman; Jeroen G. Nijland; Jack T. Pronk; Johannes Andries Roubos; Ida J. van der Klei; Noël N. M. E. van Peij; Marten Veenhuis; Hans von Döhren; Christian Wagner; Jennifer R. Wortman; Roel A. L. Bovenberg

Industrial penicillin production with the filamentous fungus Penicillium chrysogenum is based on an unprecedented effort in microbial strain improvement. To gain more insight into penicillin synthesis, we sequenced the 32.19 Mb genome of P. chrysogenum Wisconsin54-1255 and identified numerous genes responsible for key steps in penicillin production. DNA microarrays were used to compare the transcriptomes of the sequenced strain and a penicillinG high-producing strain, grown in the presence and absence of the side-chain precursor phenylacetic acid. Transcription of genes involved in biosynthesis of valine, cysteine and α-aminoadipic acid—precursors for penicillin biosynthesis—as well as of genes encoding microbody proteins, was increased in the high-producing strain. Some gene products were shown to be directly controlling β-lactam output. Many key cellular transport processes involving penicillins and intermediates remain to be characterized at the molecular level. Genes predicted to encode transporters were strongly overrepresented among the genes transcriptionally upregulated under conditions that stimulate penicillinG production, illustrating potential for future genomics-driven metabolic engineering.


Genome Biology | 2011

Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma

Christian P. Kubicek; Alfredo Herrera-Estrella; Diego Martinez; Irina S. Druzhinina; Michael R. Thon; Susanne Zeilinger; Sergio Casas-Flores; Benjamin A. Horwitz; Prasun K. Mukherjee; Mala Mukherjee; László Kredics; Luis David Alcaraz; Andrea Aerts; Zsuzsanna Antal; Lea Atanasova; Mayte Guadalupe Cervantes-Badillo; Jean F. Challacombe; Olga Chertkov; Kevin McCluskey; Fanny Coulpier; Nandan Deshpande; Hans von Döhren; Daniel J. Ebbole; Edgardo U. Esquivel-Naranjo; Erzsébet Fekete; Michel Flipphi; Fabian Glaser; Elida Yazmín Gómez-Rodríguez; Sabine Gruber; Cliff Han

BackgroundMycoparasitism, a lifestyle where one fungus is parasitic on another fungus, has special relevance when the prey is a plant pathogen, providing a strategy for biological control of pests for plant protection. Probably, the most studied biocontrol agents are species of the genus Hypocrea/Trichoderma.ResultsHere we report an analysis of the genome sequences of the two biocontrol species Trichoderma atroviride (teleomorph Hypocrea atroviridis) and Trichoderma virens (formerly Gliocladium virens, teleomorph Hypocrea virens), and a comparison with Trichoderma reesei (teleomorph Hypocrea jecorina). These three Trichoderma species display a remarkable conservation of gene order (78 to 96%), and a lack of active mobile elements probably due to repeat-induced point mutation. Several gene families are expanded in the two mycoparasitic species relative to T. reesei or other ascomycetes, and are overrepresented in non-syntenic genome regions. A phylogenetic analysis shows that T. reesei and T. virens are derived relative to T. atroviride. The mycoparasitism-specific genes thus arose in a common Trichoderma ancestor but were subsequently lost in T. reesei.ConclusionsThe data offer a better understanding of mycoparasitism, and thus enforce the development of improved biocontrol strains for efficient and environmentally friendly protection of plants.


Molecular Microbiology | 1997

Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806

Elke Dittmann; Brett A. Neilan; Marcel Erhard; Hans von Döhren; Thomas Börner

Several bloom‐forming cyanobacterial genera produce potent inhibitors of eukaryotic protein phosphatases called microcystins. Microcystins are hepatotoxic cyclic heptapeptides and are presumed to be synthesized non‐ribosomally by peptide synthetases. We identified putative peptide synthetase genes in the microcystin‐producing strain Microcystis aeruginosa PCC 7806. Non‐hepatotoxic strains of M. aeruginosa lack these genes. Strain PCC 7806 was transformed to chloramphenicol resistance. The antibiotic resistance cassette insertionally inactivated a peptide synthetase gene of strain PCC 7806 as revealed by Southern hybridization and DNA amplification. This is the first report of genetic transformation and mutation, by homologous recombination, of a bloom‐forming cyanobacterium. Chemical and enzymatic analyses, including high‐performance liquid chromatography (HPLC), mass spectrometry, amino acid activation, and protein phosphatase inhibition, revealed the inability of derived mutant cells to produce any variant of microcystin while maintaining their ability to synthesize other small peptides. The disrupted gene therefore encodes a peptide synthetase (microcystin synthetase) that is specifically involved in the biosynthesis of microcystins. Our results confirm that microcystins are synthesized non‐ribosomally and that a basic difference between toxic and non‐toxic strains of M. aeruginosa is the presence of one or more genes coding for microcystin synthetases.


Applied and Environmental Microbiology | 2001

Determination of Oligopeptide Diversity within a Natural Population of Microcystis spp. (Cyanobacteria) by Typing Single Colonies by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry

Jutta Fastner; Marcel Erhard; Hans von Döhren

ABSTRACT Besides the most prominent peptide toxin, microcystin, the cyanobacteria Microcystis spp. have been shown to produce a large variety of other bioactive oligopeptides. We investigated for the first time the oligopeptide diversity within a naturalMicrocystis population by analyzing single colonies directly with matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS). The results demonstrate a high diversity of known cyanobacterial peptides such as microcystins, anabaenopeptins, microginins, aeruginosins, and cyanopeptolins, but also many unknown substances in the Microcystis colonies. Oligopeptide patterns were mostly related to specificMicrocystis taxa. Microcystis aeruginosa(Kütz.) Kütz. colonies contained mainly microcystins, occasionally accompanied by aeruginosins. In contrast, microcystins were not detected in Microcystis ichthyoblabeKütz.; instead, colonies of this species contained anabaenopeptins and/or microginins or unknown peptides. Within a third group, Microcystis wesenbergii (Kom.) Kom. in Kondr., chiefly a cyanopeptolin and an unknown peptide were found. Similar patterns, however, were also found in colonies which could not be identified to species level. The significance of oligopeptides as a chemotaxonomic tool within the genus Microcystis is discussed. It could be demonstrated that the typing of single colonies by MALDI-TOF MS may be a valuable tool for ecological studies of the genus Microcystis as well as in early warning of toxic cyanobacterial blooms.


Microbiology | 2001

Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806.

Elke Dittmann; Marcel Erhard; Melanie Kaebernick; Christian Scheler; Brett A. Neilan; Hans von Döhren; Thomas Börner

Microcystin is a potent inhibitor of eukaryotic protein phosphatases and has been implicated in causing hepatotoxicity to humans and animals worldwide. It is produced primarily by the bloom-forming cyanobacterium Microcystis aeruginosa, although the function of the peptide in this micro-organism is unknown. In this study, a microcystin-related protein, MrpA, was identified using a microcystin-lacking mutant of M. aeruginosa, PCC 7806. Comparative two-dimensional protein electrophoresis showed that MrpA was strongly expressed in wild-type PCC 7806, but was not detectable in the mcyB mutant. MrpA showed similarity to the RhiA protein from Rhizobium leguminosarum, which is encoded by the rhiABC operon and controlled by quorum-sensing mediators. Sequencing of mrpA flanking regions in M. aeruginosa PCC 7806 revealed the presence of a rhiB homologue, mrpB, directly downstream of mrpA. Northern blot analyses of mrpA expression in cells exposed to different light conditions revealed a rapid decline of transcription under high light conditions. Most striking was a strong increase in transcript levels from cultures irradiated with blue light. The mrpA transcription level was strongly reduced in two independent microcystin-lacking mutants under all light conditions investigated.


Mycological Progress | 2008

The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins

Thomas Degenkolb; Ralf Dieckmann; Kristian Fog Nielsen; Tom Gräfenhan; Christoph Theis; Doustmorad Zafari; Priscila Chaverri; Adnan Ismaiel; Hans Brückner; Hans von Döhren; Ulf Thrane; Orlando Petrini; Gary J. Samuels

The Brevicompactum clade is recognized as a separate lineage in Trichoderma/Hypocrea. This includes T. brevicompactum and the new species T. arundinaceum, T. turrialbense, T. protrudens and Hypocrea rodmanii. The closest relative of the Brevicompactum clade is the Lutea clade. With the exception of H. rodmanii, all members of this clade produce the simple trichothecene-type toxins harzianum A or trichodermin. All members of the clade produce peptaibiotics, including alamethicins. Strains previously reported as T. harzianum (ATCC 90237), T. viride (NRRL 3199) or Hypocrea sp. (F000527, CBS 113214) to produce trichothecenes are reidentified as T. arundinaceum. The Brevicompactum clade is not closely related to species that have biological application.


Fungal Genetics and Biology | 2009

The 2008 update of the Aspergillus nidulans genome annotation: A community effort

Jennifer R. Wortman; Jane Mabey Gilsenan; Vinita Joardar; Jennifer Deegan; John Clutterbuck; Mikael Rørdam Andersen; David B. Archer; Mojca Benčina; Gerhard Braus; Pedro M. Coutinho; Hans von Döhren; John H. Doonan; Arnold J. M. Driessen; Pawel Durek; Eduardo A. Espeso; Erzsébet Fekete; Michel Flipphi; Carlos Garcia Estrada; Steven Geysens; Gustavo H. Goldman; Piet W.J. de Groot; Kim Hansen; Steven D. Harris; Thorsten Heinekamp; Kerstin Helmstaedt; Bernard Henrissat; Gerald Hofmann; Tim Homan; Tetsuya Horio; Hiroyuki Horiuchi

The identification and annotation of protein-coding genes is one of the primary goals of whole-genome sequencing projects, and the accuracy of predicting the primary protein products of gene expression is vital to the interpretation of the available data and the design of downstream functional applications. Nevertheless, the comprehensive annotation of eukaryotic genomes remains a considerable challenge. Many genomes submitted to public databases, including those of major model organisms, contain significant numbers of wrong and incomplete gene predictions. We present a community-based reannotation of the Aspergillus nidulans genome with the primary goal of increasing the number and quality of protein functional assignments through the careful review of experts in the field of fungal biology.


Fungal Genetics and Biology | 2009

A survey of nonribosomal peptide synthetase (NRPS) genes in Aspergillus nidulans.

Hans von Döhren

The genome of Aspergillus nidulans carries 27 genes encoding nonribosomal peptide synthetase (NRPS) structures, although only five of these forming peptides and amino acid containing metabolites have been identified so far. This manuscript describes domain structures, substrate binding pockets and related genes and gene clusters and summarizes our current state of product prediction of fungal NRPS systems.


FEBS Letters | 1995

Expression of an active adenylate-forming domain of peptide synthetases corresponding to acyl-CoA-synthetases

Ralf Dieckmann; Yoen-Ok Lee; Henk van Liempt; Hans von Döhren; Horst Kleinkauf

Peptide synthetases and acyl‐CoA‐synthetases form acyl adenylates which are transferred to CoA or enzyme‐bound pantetheine. To verify the existence of an adenylate domain in peptide synthetases, a 60.8 kDa fragment of tyrocidine 1‐synthetase was constructed by a 1629 bp deletion, expressed in Escherichia coli, and characterized. The truncated multienzyme activated phenylalanine and substrate analogues with comparable kinetics as the over‐expressed synthetase, as judged by ATP‐[32P]PPi exchange reaction. Thus the N‐terminal domain resembling an acyl‐CoA‐synthetase is an autonomous structural element. This N‐terminal domain is followed by a cofactor binding domain, resembling acyl carrier proteins involved in polyketide formation.

Collaboration


Dive into the Hans von Döhren's collaboration.

Top Co-Authors

Avatar

Horst Kleinkauf

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Ralf Dieckmann

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Torsten Neuhof

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Marcel Erhard

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torsten Schwecke

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Martin Welker

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Kristian Fog Nielsen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge