Hans-Wolfgang Loidl
Heriot-Watt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hans-Wolfgang Loidl.
Journal of Functional Programming | 1998
Phil Trinder; Kevin Hammond; Hans-Wolfgang Loidl; Sl Peyton Jones
The process of writing large parallel programs is complicated by the need to specify both the parallel behaviour of the program and the algorithm that is to be used to compute its result. This paper introduces evaluation strategies: lazy higher-order functions that control the parallel evaluation of non-strict functional languages. Using evaluation strategies, it is possible to achieve a clean separation between algorithmic and behavioural code. The result is enhanced clarity and shorter parallel programs. Evaluation strategies are a very general concept: this paper shows how they can be used to model a wide range of commonly used programming paradigms, including divide-and-conquer parallelism, pipeline parallelism, producer/consumer parallelism, and data-oriented parallelism. Because they are based on unrestricted higher-order functions, they can also capture irregular parallel structures. Evaluation strategies are not just of theoretical interest: they have evolved out of our experience in parallelising several large-scale parallel applications, where they have proved invaluable in helping to manage the complexities of parallel behaviour. Some of these applications are described in detail here. The largest application we have studied to date, Lolita, is a 40,000 line natural language engineering system. Initial results show that for these programs we can achieve acceptable parallel performance, for relatively little programming effort.
symposium on principles of programming languages | 2010
Steffen Jost; Kevin Hammond; Hans-Wolfgang Loidl; Martin Hofmann
We describe a new automatic static analysis for determining upper-bound functions on the use of quantitative resources for strict, higher-order, polymorphic, recursive programs dealing with possibly-aliased data. Our analysis is a variant of Tarjans manual amortised cost analysis technique. We use a type-based approach, exploiting linearity to allow inference, and place a new emphasis on the number of references to a data object. The bounds we infer depend on the sizes of the various inputs to a program. They thus expose the impact of specific inputs on the overall cost behaviour. The key novel aspect of our work is that it deals directly with polymorphic higher-order functions without requiring source-level transformations that could alter resource usage . We thus obtain safe and accurate compile-time bounds. Our work is generic in that it deals with a variety of quantitative resources. We illustrate our approach with reference to dynamic memory allocations/deallocations, stack usage, and worst-case execution time, using metrics taken from a real implementation on a simple micro-controller platform that is used in safety-critical automotive applications.
Higher-order and Symbolic Computation \/ Lisp and Symbolic Computation | 2003
Hans-Wolfgang Loidl; Fernando Rubio; Norman Scaife; Kevin Hammond; Susumu Horiguchi; Ulrike Klusik; Rita Loogen; Greg Michaelson; Ricardo Peña; Steffen Priebe; Á J. Rebón; Phil Trinder
This paper presents a practical evaluation and comparison of three state-of-the-art parallel functional languages. The evaluation is based on implementations of three typical symbolic computation programs, with performance measured on a Beowulf-class parallel architecture.We assess three mature parallel functional languages: PMLS, a system for implicitly parallel execution of ML programs; GPH, a mainly implicit parallel extension of Haskell; and Eden, a more explicit parallel extension of Haskell designed for both distributed and parallel execution. While all three languages employ a completely implicit approach to communication, each language takes a different approach to specifying and controlling parallelism, ranging from explicit identification of processes as language constructs (Eden) through annotation of potential parallelism (GPH) to automatic detection of parallel skeletons in sequential code (PMLS).We present detailed performance measurements of all three systems on a widely available parallel architecture: a Beowulf cluster of low-cost commodity workstations. We use three representative symbolic applications: a matrix multiplication algorithm, an exact linear system solver, and a simple ray-tracer. Our results show how moderate speedups can be achieved with little or no changes to the sequential code, and that parallel performance can be significantly improved even within our high-level model of parallel functional programming by controlling key aspects of the program such as load distribution and thread granularity.
Journal of Functional Programming | 2002
Philip W. Trinder; Hans-Wolfgang Loidl; Robert F. Pointon
Parallel and distributed languages specify computations on multiple processors and have a computation language to describe the algorithm, i.e. what to compute, and a coordination language to describe how to organise the computations across the processors. Haskell has been used as the computation language for a wide variety of parallel and distributed languages, and this paper is a comprehensive survey of implemented languages. We outline parallel and distributed language concepts and classify Haskell extensions using them. Similar example programs are used to illustrate and contrast the coordination languages, and the comparison is facilitated by the common computation language. A lazy language is not an obvious choice for parallel or distributed computation, and we address the question of why Haskell is a common functional computation language.
symposium/workshop on haskell | 2010
Simon Marlow; Patrick Maier; Hans-Wolfgang Loidl; Mustafa Aswad; Philip W. Trinder
We present a complete redesign of evaluation strategies, a key abstraction for specifying pure, deterministic parallelism in Haskell. Our new formulation preserves the compositionality and modularity benefits of the original, while providing significant new benefits. First, we introduce an evaluation-order monad to provide clearer, more generic, and more efficient specification of parallel evaluation. Secondly, the new formulation resolves a subtle space management issue with the original strategies, allowing parallelism (sparks) to be preserved while reclaiming heap associated with superfluous parallelism. Related to this, the new formulation provides far better support for speculative parallelism as the garbage collector now prunes unneeded speculation. Finally, the new formulation provides improved compositionality: we can directly express parallelism embedded within lazy data structures, producing more compositional strategies, and our basic strategies are parametric in the coordination combinator, facilitating a richer set of parallelism combinators. We give measurements over a range of benchmarks demonstrating that the runtime overheads of the new formulation relative to the original are low, and the new strategies even yield slightly better speedups on average than the original strategies
Theoretical Computer Science | 2007
David Aspinall; Lennart Beringer; Martin Hofmann; Hans-Wolfgang Loidl; Alberto Momigliano
We introduce a reasoning infrastructure for proving statements about resource consumption in a fragment of the Java Virtual Machine Language (JVML). The infrastructure is based on a small hierarchy of program logics, with increasing levels of abstraction: at the top there is a type system for a high-level language that encodes resource consumption. The infrastructure is designed to be used in a proof-carrying code (PCC) scenario, where mobile programs can be equipped with formal evidence that they have predictable resource behaviour. This article focuses on the core logic in our infrastructure, a VDM-style program logic for partial correctness, which can make statements about resource consumption alongside functional behaviour. We establish some important results for this logic, including soundness and completeness with respect to a resource-aware operational semantics for the JVML. We also present a second logic built on top of the core logic, which is used to express termination; it too is shown to be sound and complete. We then outline how high-level language type systems may be connected to these logics. The entire infrastructure has been formalized in Isabelle/HOL, both to enhance the confidence in our meta-theoretical results, and to provide a prototype implementation for PCC. We give examples to show the usefulness of this approach, including proofs of resource bounds on code resulting from compiling high-level functional programs.
Concurrency and Computation: Practice and Experience | 1999
Hans-Wolfgang Loidl; Philip W. Trinder; Kevin Hammond; Sahalu B. Junaidu; Richard G. Morgan; Simon L. Peyton Jones
We investigate the claim that functional languages offer low-cost parallelism in the context of symbolic programs on modest parallel architectures. In our investigation we present the first comparative study of the construction of large applications in a parallel functional language, in our case in Glasgow Parallel Haskell (GPH). The applications cover a range of application areas, use several parallel programming paradigms, and are measured on two very different parallel architectures. On the applications level the most significant result is that we are able to achieve modest wall-clock speedups (between factors of 2 and 10) over the optimised sequential versions for all but one of the programs. Speedups are obtained even for programs that were not written with the intention of being parallelised. These gains are achieved with a relatively small programmer-effort. One reason for the relative ease of parallelisation is the use of evaluation strategies, a new parallel programming technique that separates the algorithm from the co-ordination of parallel behaviour. On the language level we show that the combination of lazy and parallel evaluation is useful for achieving a high level of abstraction. In particular we can describe top-level parallelism, and also preserve module abstraction by describing parallelism over the data structures provided at the module interface (‘data-oriented parallelism’). Furthermore, we find that the determinism of the language is helpful, as is the largely implicit nature of parallelism in GPH. Copyright
formal methods | 2009
Steffen Jost; Hans-Wolfgang Loidl; Kevin Hammond; Norman Scaife; Martin Hofmann
Bounding resource usage is important for a number of areas, notably real-time embedded systems and safety-critical systems. In this paper, we present a fully automatic static type-based analysis for inferring upper bounds on resource usage for programs involving general algebraic datatypes and full recursion. Our method can easily be used to bound any countable resource, without needing to revisit proofs. We apply the analysis to the important metrics of worst-case execution time, stack- and heap-space usage. Our results from several realistic embedded control applications demonstrate good matches between our inferred bounds and measured worst-case costs for heap and stack usage. For time usage we infer good bounds for one application. Where we obtain less tight bounds, this is due to the use of software floating-point libraries.
APPT'11 Proceedings of the 9th international conference on Advanced parallel processing technologies | 2011
Robert J. Stewart; Philip W. Trinder; Hans-Wolfgang Loidl
The MapReduce parallel computational model is of increasing importance. A number of High Level Query Languages (HLQLs) have been constructed on top of the Hadoop MapReduce realization, primarily Pig, Hive, and JAQL. This paper makes a systematic performance comparison of these three HLQLs, focusing on scale up, scale out and runtime metrics. We further make a language comparison of the HLQLs focusing on conciseness and computational power. The HLQL development communities are engaged in the study, which revealed technical bottlenecks and limitations described in this document, and it is impacting their development.
theorem proving in higher order logics | 2004
David Aspinall; Lennart Beringer; Martin Hofmann; Hans-Wolfgang Loidl; Alberto Momigliano
We present a program logic for reasoning about resource consumption of programs written in Grail, an abstract fragment of the Java Virtual Machine Language. Serving as the target logic of a certifying compiler, the logic exploits Grail’s dual nature of combining a functional interpretation with object-oriented features and a cost model for the JVM. We present the resource-aware operational semantics of Grail, the program logic, and prove soundness and completeness. All of the work described has been formalised in the theorem prover Isabelle/HOL, which provides us with an implementation of the logic as well as confidence in the results. We conclude with examples of using the logic for proving resource bounds on code resulting from compiling high-level functional programs.