Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hansel M. Fletcher is active.

Publication


Featured researches published by Hansel M. Fletcher.


Infection and Immunity | 2005

Gingipains from Porphyromonas gingivalis W83 Induce Cell Adhesion Molecule Cleavage and Apoptosis in Endothelial Cells

Shaun M. Sheets; Jan Potempa; James Travis; Carlos A. Casiano; Hansel M. Fletcher

ABSTRACT The presence of Porphyromonas gingivalis in the periodontal pocket and the high levels of gingipain activity detected in gingival crevicular fluid could implicate a role for gingipains in the destruction of the highly vascular periodontal tissue. To explore the effects of these proteases on endothelial cells, we exposed bovine coronary artery endothelial cells and human microvascular endothelial cells to gingipain-active extracellular protein preparations and/or purified gingipains from P. gingivalis. Treated cells exhibited a rapid loss of cell adhesion properties that was followed by apoptotic cell death. Cleavage of N- and VE-cadherin and integrin β1 was observed in immunoblots of cell lysates. There was a direct correlation between the kinetics of cleavage of N- and VE-cadherin and loss of cell adhesion properties. Loss of cell adhesion, as well as N- and VE-cadherin and integrin β1 cleavage, could be inhibited or significantly delayed by preincubation of P. gingivalis W83 gingipain-active extracellular extracts with the cysteine protease inhibitor Nα-p-tosyl-l-lysine chloromethylketone. Furthermore, purified gingipains also induced endothelial cell detachment and apoptosis. Apoptosis-associated events, including annexin V positivity, caspase-3 activation, and cleavage of the caspase substrates poly(ADP-ribose) polymerase and topoisomerase I (Topo I), were observed in endothelial cells after detachment. All of the effects observed were correlated with the different levels of cysteine-dependent proteolytic activity of the extracts tested. Taken together, these results indicate that gingipains from P. gingivalis can alter cell adhesion molecules and induce endothelial cell death, which could have implications for the pathogenicity of this organism.


Frontiers in Bioscience | 2008

Gingipain-dependent interactions with the host are important for survival of Porphyromonas gingivalis.

Shaun M. Sheets; Antonette G. Robles-Price; Rachelle M. E. McKenzie; Carlos A. Casiano; Hansel M. Fletcher

Porphyromonas gingivalis, a major periodontal pathogen, must acquire nutrients from host derived substrates, overcome oxidative stress and subvert the immune system. These activities can be coordinated via the gingipains which represent the most significant virulence factor produced by this organism. In the context of our contribution to this field, we will review the current understanding of gingipain biogenesis, glycosylation, and regulation, as well as discuss their role in oxidative stress resistance and apoptosis. We can postulate a model, in which gingipains may be part of the mechanism for P. gingivalis virulence.


Infection and Immunity | 2011

Filifactor alocis Has Virulence Attributes That Can Enhance Its Persistence under Oxidative Stress Conditions and Mediate Invasion of Epithelial Cells by Porphyromonas gingivalis

A. Wilson Aruni; Francis Roy; Hansel M. Fletcher

ABSTRACT Filifactor alocis, a Gram-positive anaerobic rod, is one of the most abundant bacteria identified in the periodontal pockets of periodontitis patients. There is a gap in our understanding of its pathogenicity and ability to interact with other periodontal pathogens. To evaluate the virulence potential of F. alocis and its ability to interact with Porphyromonas gingivalis W83, several clinical isolates of F. alocis were characterized. F. alocis showed nongingipain protease and sialidase activities. In silico analysis revealed the molecular relatedness of several virulence factors from F. alocis and P. gingivalis. In contrast to P. gingivalis, F. alocis was relatively resistant to oxidative stress and its growth was stimulated under those conditions. Biofilm formation was significantly increased in coculture. There was an increase in adherence and invasion of epithelial cells in coculture compared with P. gingivalis or F. alocis monocultures. In those epithelial cells, endocytic vesicle-mediated internalization was observed only during coculture. The F. alocis clinical isolate had an increased invasive capacity in coculture with P. gingivalis compared to the ATCC 35896 strain. In addition, there was variation in the proteomes of the clinical isolates compared to the ATCC 35896 strain. Hypothetical proteins and those known to be important virulence factors in other bacteria were identified. These results indicate that F. alocis has virulence properties that may enhance its ability to survive and persist in the periodontal pocket and may play an important role in infection-induced periodontal disease.


Infection and Immunity | 2005

Inactivation of vimF, a Putative Glycosyltransferase Gene Downstream of vimE, Alters Glycosylation and Activation of the Gingipains in Porphyromonas gingivalis W83

Elaine Vanterpool; Francis Roy; Hansel M. Fletcher

ABSTRACT Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A 1.2-kb open reading frame, a putative glycosyltransferase, downstream of vimE, was cloned, insertionally inactivated using the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, this mutant, designated P. gingivalis FLL95, was nonpigmented and nonhemolytic when plated on Brucella blood agar. Arginine- and lysine-specific gingipain activities were reduced by approximately 97% and 96%, respectively, relative to that of the parent strain. These activities were unaffected by the growth phase, in contrast to the vimA-defective mutant P. gingivalis FLL92. Expression of the rgpA, rgpB, and kgp gingipain genes was unaffected in P. gingivalis FLL95 in comparison to the wild-type strain. In nonactive gingipain extracellular protein fractions, multiple high-molecular-weight proteins immunoreacted with gingipain-specific antibodies. The specific gingipain-associated sugar moiety recognized by monoclonal antibody 1B5 was absent in FLL95. Taken together, these results suggest that the vimE downstream gene, designated vimF (virulence modulating gene F), which is a putative glycosyltransferase group 1, is involved in the regulation of the major virulence factors of P. gingivalis.


Infection and Immunity | 2001

vimA Gene Downstream of recA Is Involved in Virulence Modulation in Porphyromonas gingivalis W83

Hafid Abaibou; Zhuo Chen; G. Jon Olango; Yi Liu; Jessica Edwards; Hansel M. Fletcher

ABSTRACT A 0.9-kb open reading frame encoding a unique 32-kDa protein was identified downstream of the recA gene ofPorphyromonas gingivalis. Reverse transcription-PCR and Northern blot analysis showed that both the recA gene and this open reading frame are part of the same transcriptional unit. This cloned fragment was insertionally inactivated using theermF-ermAM antibiotic resistance cassette to create a defective mutant by allelic exchange. When plated onBrucella blood agar, the mutant strain, designated P. gingivalis FLL92, was non-black pigmented and showed significant reduction in beta-hemolysis compared with the parent strain,P. gingivalis W83. Arginine- and lysine-specific cysteine protease activities, which were mostly soluble, were approximately 90% lower than that of the parent strain. Expression of the rgpA, rgpB, and kgp protease genes was the same in P. gingivalis FLL92 as in the wild-type strain. In contrast to the parent strain, P. gingivalis FLL92 showed increased autoaggregration in addition to a significant reduction in hemagglutinating and hemolysin activities. In in vivo experiments using a mouse model, P. gingivalisFLL92 was dramatically less virulent than the parent strain. A molecular survey of this mutant and the parent strain using all knownP. gingivalis insertion sequence elements as probes suggested that no intragenomic changes due to the movement of these elements have occurred in P. gingivalis FLL92. Taken together, these results suggest that the recA downstream gene, designated vimA (virulence-modulating gene), plays an important role in virulence modulation in P. gingivalisW83, possibly representing a novel posttranscriptional or translational regulation of virulence factors in P. gingivalis.


Infection and Immunity | 2006

Gingipains from Porphyromonas gingivalis W83 Synergistically Disrupt Endothelial Cell Adhesion and Can Induce Caspase-Independent Apoptosis

Shaun M. Sheets; Jan Potempa; James Travis; Hansel M. Fletcher; Carlos A. Casiano

ABSTRACT We have shown previously that gingipains from Porphyromonas gingivalis W83 can induce cell detachment, cell adhesion molecule (CAM) cleavage, and apoptosis in endothelial cells; however, the specific roles of the individual gingipains are unclear. Using purified gingipains, we determined that each of the gingipains can cleave CAMs to varying degrees with differing kinetics. Kgp and HRgpA work together to quickly detach endothelial cells. Interestingly, in the absence of active caspases, both gingipain-active W83 extracts and purified HRgpA and RgpB induce apoptotic morphology, suggesting that the gingipains can induce both caspase-dependent and caspase-independent apoptosis. Using z-VAD-FMK to inhibit Kgp activity and leupeptin to inhibit Rgp activity in gingipain-active W83 extracts, we investigated the relative significance of the synergistic role of the gingipains. z-VAD-FMK or leupeptin delayed, but did not inhibit, cell detachment induced by gingipain-active W83 extracts or purified gingipains. There was partial cleavage of N-cadherin and cleavage of VE-cadherin was not inhibited. Degradation of integrin β1 was inhibited only in the presence of z-VAD-FMK. These results further clarify the role P. gingivalis plays in tissue destruction occurring in the periodontal pocket.


Infection and Immunity | 2005

Altered gingipain maturation in vimA- and vimE-defective isogenic mutants of Porphyromonas gingivalis

Elaine Vanterpool; Francis Roy; Lawrence B. Sandberg; Hansel M. Fletcher

ABSTRACT We have previously shown that gingipain activity in Porphyromonas gingivalis is modulated by the unique vimA and vimE genes. To determine if these genes had a similar phenotypic effect on protease maturation and activation, isogenic mutants defective in those genes were further characterized. Western blot analyses with antigingipain antibodies showed RgpA-, RgpB-, and Kgp-immunoreactive bands in membrane fractions as well as the culture supernatant of both P. gingivalis W83 and FLL93, the vimE-defective mutant. In contrast, the membrane of P. gingivalis FLL92, the vimA-defective mutant, demonstrated immunoreactivity only with RgpB antibodies. With mass spectrometry or Western blots, full-length RgpA and RgpB were identified from extracellular fractions. In similar extracellular fractions from P. gingivalis FLL92 and FLL93, purified RgpB activated only arginine-specific activity. In addition, the lipopolysaccharide profiles of the vimA and vimE mutants were truncated in comparison to that of W83. While glycosylated proteins were detected in the membrane and extracellular fractions from the vimA- and vimE-defective mutants, a monoclonal antibody (1B5) that reacts with specific sugar moieties of the P. gingivalis cell surface polysaccharide and membrane-associated Rgp gingipain showed no immunoreactivity with these fractions. Taken together, these results indicate a possible defect in sugar biogenesis in both the vimA- and vimE-defective mutants. These modulating genes play a role in the secretion, processing, and/or anchorage of gingipains on the cell surface.


Infection and Immunity | 2005

Lipopolysaccharide Preparation Extracted from Porphyromonas gingivalis Lipoprotein-Deficient Mutant Shows a Marked Decrease in Toll-Like Receptor 2-Mediated Signaling

Yasuyuki Asai; Masahito Hashimoto; Hansel M. Fletcher; Kensuke Miyake; Shizuo Akira; Tomohiko Ogawa

ABSTRACT We recently demonstrated that a new PG1828-encoded lipoprotein (PG1828LP) was able to be separated from a Porphyromonas gingivalis lipopolysaccharide (LPS) preparation, and we found that it exhibited strong cell activation, similar to that of Escherichia coli LPS, through a Toll-like receptor 2 (TLR2)-dependent pathway. In order to determine the virulence of PG1828LP toward cell activation, we generated a PG1828-deficient mutant of P. gingivalis strain 381 by allelic exchange mutagenesis using an ermF-ermAM antibiotic resistance cassette. A highly purified preparation of LPS from a PG1828-deficient mutant (ΔPG1828-LPS) showed nearly the same ladder-like patterns in silver-stained gels as a preparation of LPS from a wild-type strain (WT-LPS), as well as Limulus amoebocyte lysate activities that were similar to those of the WT-LPS preparation. However, the ability of the ΔPG1828-LPS preparation to activate NF-κB in TLR2-expressing cells was markedly attenuated. Cytokine production by human gingival fibroblasts was also decreased in response to the ΔPG1828-LPS preparation in comparison with the WT-LPS preparation, and the activity was comparable to the stimulation of highly purified lipid A of P. gingivalis by TLR4. Further, lethal toxicity was rarely observed following intraperitoneal injection of the PG1828-deficient mutant into mice compared to that with the wild-type strain, while the ΔPG1828-LPS preparation showed no lethal toxicity. Taken together, these results clearly indicate that PG1828LP plays an essential role in inflammatory responses and may be a major virulence factor of P. gingivalis.


Infection and Immunity | 2004

The vimE Gene Downstream of vimA Is Independently Expressed and Is Involved in Modulating Proteolytic Activity in Porphyromonas gingivalis W83

Elaine Vanterpool; Francis Roy; Hansel M. Fletcher

ABSTRACT Regulation/activation of the Porphyromonas gingivalis gingipains is poorly understood. A unique 1.3-kb open reading frame downstream of the bcp-recA-vimA transcriptional unit was cloned, insertionally inactivated with the ermF-ermAM antibiotic resistance cassette, and used to create a defective mutant by allelic exchange. In contrast to the wild-type W83 strain, the growth rate of the mutant strain (designated FLL93) was reduced, and when plated on Brucella blood agar it was nonpigmented and nonhemolytic. Arginine- and lysine-specific gingipain activities were reduced by approximately 90 and 85%, respectively, relative to activities of the parent strain. These activities were unaffected by the cultures growth phase, in contrast to the vimA-defective mutant P. gingivalis FLL92, which has increased proteolytic activity in stationary phase. Expression of the rgpA, rgpB, and kgp gingipain genes was unaltered in P. gingivalis FLL93 compared to that of the wild-type strain. Further, in extracellular protein fractions a 64-kDa band was identified that was immunoreactive with the RgpB-specific proenzyme antibodies. Active-site labeling with dansyl-glutamyl-glycyl-arginyl chloromethyl ketone or immunoblot analysis showed no detectable protein band representing the gingipain catalytic domain. In vitro protease activity could be slightly induced by a urea denaturation-renaturation cycle in an extracellular protein fraction, in contrast to the vimA-defective mutant P. gingivalis FLL92. Expression of flanking genes, including recA, vimA, and Pg0792, was unaltered by the mutation. Taken together, these results suggest that the vimA downstream gene, designated vimE (for virulence-modulating gene E), is involved in the regulation of protease activity in P. gingivalis.


Fems Microbiology Letters | 2010

Involvement of extracytoplasmic function sigma factors in virulence regulation in Porphyromonas gingivalis W83.

Yuetan Dou; Devon Osbourne; Rachelle M. E. McKenzie; Hansel M. Fletcher

Extracytoplasmic function (ECF) sigma factors are known to play an important role in the bacterial response to various environmental stresses and can significantly modulate their pathogenic potential. In the genome of Porphyromonas gingivalis W83, six putative ECF sigma factors were identified. To further evaluate their role in this organism, a PCR-based linear transformation method was used to inactivate five ECF sigma factor genes (PG0162, PG0214, PG0985, PG1660, and PG1827) by allelic exchange mutagenesis. All five isogenic mutants formed black-pigmented colonies on blood agar. Mutants defective in PG0985, PG1660, and PG1827 genes were more sensitive to 0.25 mM of hydrogen peroxide compared with the wild-type strain. Isogenic mutants of PG0162 and PG1660 showed a 50% decrease in gingipain activity. Reverse transcription-PCR analysis showed that there was no alteration in the expression of rgpA, rgpB, and kgp gingipain genes in these mutants. Hemolytic and hemagglutination activities were decreased by more than 50% in the PG0162 mutant compared with the wild type. Taken together, these findings suggest that ECF sigma factors can modulate important virulence factors in P. gingivalis. ECF sigma factors encoded by the PG0162 and PG1660 genes might also be involved in the post-transcriptional regulation of the gingipains.

Collaboration


Dive into the Hansel M. Fletcher's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Robles

Loma Linda University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge