Hansi Weissensteiner
Innsbruck Medical University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hansi Weissensteiner.
Nucleic Acids Research | 2016
Hansi Weissensteiner; Dominic Pacher; Anita Kloss-Brandstätter; Lukas Forer; Günther Specht; Hans-Jürgen Bandelt; Florian Kronenberg; Antonio Salas; Sebastian Schönherr
Mitochondrial DNA (mtDNA) profiles can be classified into phylogenetic clusters (haplogroups), which is of great relevance for evolutionary, forensic and medical genetics. With the extensive growth of the underlying phylogenetic tree summarizing the published mtDNA sequences, the manual process of haplogroup classification would be too time-consuming. The previously published classification tool HaploGrep provided an automatic way to address this issue. Here, we present the completely updated version HaploGrep 2 offering several advanced features, including a generic rule-based system for immediate quality control (QC). This allows detecting artificial recombinants and missing variants as well as annotating rare and phantom mutations. Furthermore, the handling of high-throughput data in form of VCF files is now directly supported. For data output, several graphical reports are generated in real time, such as a multiple sequence alignment format, a VCF format and extended haplogroup QC reports, all viewable directly within the application. In addition, HaploGrep 2 generates a publication-ready phylogenetic tree of all input samples encoded relative to the revised Cambridge Reference Sequence. Finally, new distance measures and optimizations of the algorithm increase accuracy and speed-up the application. HaploGrep 2 can be accessed freely and without any registration at http://haplogrep.uibk.ac.at.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Fernanda Kehdy; Mateus H. Gouveia; Moara Machado; Wagner C. S. Magalhães; Andrea R. V. R. Horimoto; Bernardo Lessa Horta; Rennan G. Moreira; Thiago P. Leal; Marília O. Scliar; Giordano Soares-Souza; Fernanda Rodrigues-Soares; Gilderlanio S. Araújo; Roxana Zamudio; Hanaisa P. Sant Anna; Hadassa Campos Santos; Nubia Esteban Duarte; Rosemeire Leovigildo Fiaccone; Camila Alexandrina Figueiredo; Thiago Magalhães da Silva; Gustavo Nunes de Oliveira Costa; Sandra Beleza; Douglas E. Berg; Lilia Cabrera; Guilherme Debortoli; Denise Duarte; Silvia Ghirotto; Robert H. Gilman; Vanessa F. Gonçalves; Andrea Rita Marrero; Yara Costa Netto Muniz
Significance The EPIGEN Brazil Project is the largest Latin-American initiative to study the genomic diversity of admixed populations and its effect on phenotypes. We studied 6,487 Brazilians from three population-based cohorts with different geographic and demographic backgrounds. We identified ancestry components of these populations at a previously unmatched geographic resolution. We broadened our understanding of the African diaspora, the principal destination of which was Brazil, by revealing an African ancestry component that likely derives from the slave trade from Bantu/eastern African populations. In the context of the current debate about how the pattern of deleterious mutations varies between Africans and Europeans, we use whole-genome data to show that continental admixture is the main and complex determinant of the amount of deleterious genotypes in admixed individuals. While South Americans are underrepresented in human genomic diversity studies, Brazil has been a classical model for population genetics studies on admixture. We present the results of the EPIGEN Brazil Initiative, the most comprehensive up-to-date genomic analysis of any Latin-American population. A population-based genome-wide analysis of 6,487 individuals was performed in the context of worldwide genomic diversity to elucidate how ancestry, kinship, and inbreeding interact in three populations with different histories from the Northeast (African ancestry: 50%), Southeast, and South (both with European ancestry >70%) of Brazil. We showed that ancestry-positive assortative mating permeated Brazilian history. We traced European ancestry in the Southeast/South to a wider European/Middle Eastern region with respect to the Northeast, where ancestry seems restricted to Iberia. By developing an approximate Bayesian computation framework, we infer more recent European immigration to the Southeast/South than to the Northeast. Also, the observed low Native-American ancestry (6–8%) was mostly introduced in different regions of Brazil soon after the European Conquest. We broadened our understanding of the African diaspora, the major destination of which was Brazil, by revealing that Brazilians display two within-Africa ancestry components: one associated with non-Bantu/western Africans (more evident in the Northeast and African Americans) and one associated with Bantu/eastern Africans (more present in the Southeast/South). Furthermore, the whole-genome analysis of 30 individuals (42-fold deep coverage) shows that continental admixture rather than local post-Columbian history is the main and complex determinant of the individual amount of deleterious genotypes.
Nephrology Dialysis Transplantation | 2015
Stephanie Titze; Matthias Schmid; Anna Köttgen; Martin Busch; Jürgen Floege; Christoph Wanner; Florian Kronenberg; Kai-Uwe Eckardt; Hans-Ulrich Prokosch; Barbara Bärthlein; Andreas Beck; Thomas Ganslandt; Olaf Gefeller; Jan Köster; Martina Malzer; Georg Schlieper; Frank Eitner; Sabine Meisen; Katharina Kehl; Elfriede Arweiler; Elke Schaeffner; Seema Baid-Agrawal; Ralf Schindler; Silvia Hübner; Thomas Dienemann; Karl F. Hilgers; Ulla T. Schultheiß; Gerd Walz; Jan T. Kielstein; Johan M. Lorenzen
BACKGROUND A main challenge for targeting chronic kidney disease (CKD) is the heterogeneity of its causes, co-morbidities and outcomes. Patients under nephrological care represent an important reference population, but knowledge about their characteristics is limited. METHODS We enrolled 5217 carefully phenotyped patients with moderate CKD [estimated glomerular filtration rate (eGFR) 30-60 mL/min per 1.73 m(2) or overt proteinuria at higher eGFR] under routine care of nephrologists into the German Chronic Kidney Disease (GCKD) study, thereby establishing the currently worldwide largest CKD cohort. RESULTS The cohort has 60% men, a mean age (±SD) of 60 ± 12 years, a mean eGFR of 47 ± 17 mL/min per 1.73 m(2) and a median (IQR) urinary albumin/creatinine ratio of 51 (9-392) mg/g. Assessment of causes of CKD revealed a high degree of uncertainty, with the leading cause unknown in 20% and frequent suspicion of multifactorial pathogenesis. Thirty-five per cent of patients had diabetes, but only 15% were considered to have diabetic nephropathy. Cardiovascular disease prevalence was high (32%, excluding hypertension); prevalent risk factors included smoking (59% current or former smokers) and obesity (43% with BMI >30). Despite widespread use of anti-hypertensive medication, only 52% of the cohort had an office blood pressure <140/90 mmHg. Family histories for cardiovascular events (39%) and renal disease (28%) suggest familial aggregation. CONCLUSIONS Patients with moderate CKD under specialist care have a high disease burden. Improved diagnostic accuracy, rigorous management of risk factors and unravelling of the genetic predisposition may represent strategies for improving prognosis.
Atherosclerosis | 2015
Julia Raschenberger; Barbara Kollerits; Stephanie Titze; Anna Köttgen; Barbara Bärthlein; Arif B. Ekici; Lukas Forer; Sebastian Schönherr; Hansi Weissensteiner; Margot Haun; Christoph Wanner; Kai-Uwe Eckardt; Florian Kronenberg
BACKGROUND Chronic kidney disease (CKD) affects 10-15% of the general population and affected individuals are at an increased risk for cardiovascular disease (CVD). Since telomere length is considered to be involved in biological aging, we tested whether relative telomere length (RTL) might be a marker for these two diseases. METHODS The German Chronic Kidney Disease (GCKD) study is an ongoing prospective cohort study including patients with CKD of moderate severity. RTL was measured by qPCR in 4955 out of 5217 GCKD patients at baseline. RESULTS RTL was distributed in the cohort with a mean ± SD of 0.95 ± 0.19. CVD was present in 1266 patients. Each decrease of RTL by 0.1 unit was associated with a higher probability for prevalent CVD: OR = 1.06, 95% CI 1.02-1.11, p = 0.007 (adjusted for age, sex, eGFR, BMI, ln-CRP, smoking, hypertension, diabetes, and lipids). Similar findings were observed for history of specific CVD entities, such as coronary artery disease (OR = 1.05, p = 0.025), myocardial infarction (OR = 1.08, p = 0.013) and percutaneous transluminal coronary angioplasty (OR = 1.06, p = 0.032). The strongest associations were found for interventions at the carotid arteries (OR = 1.25, p = 0.001) as well as aortic aneurysms (OR = 1.22, p = 0.001). CONCLUSIONS In the presence of CKD there is a significant association between shorter RTL and CVD manifestations. RTL appears to be a marker reflecting changes in homeostasis associated with CKD that may contribute to the excess CVD risk.
Nucleic Acids Research | 2016
Hansi Weissensteiner; Lukas Forer; Christian Fuchsberger; Bernd Schöpf; Anita Kloss-Brandstätter; Günther Specht; Florian Kronenberg; Sebastian Schönherr
Next generation sequencing (NGS) allows investigating mitochondrial DNA (mtDNA) characteristics such as heteroplasmy (i.e. intra-individual sequence variation) to a higher level of detail. While several pipelines for analyzing heteroplasmies exist, issues in usability, accuracy of results and interpreting final data limit their usage. Here we present mtDNA-Server, a scalable web server for the analysis of mtDNA studies of any size with a special focus on usability as well as reliable identification and quantification of heteroplasmic variants. The mtDNA-Server workflow includes parallel read alignment, heteroplasmy detection, artefact or contamination identification, variant annotation as well as several quality control metrics, often neglected in current mtDNA NGS studies. All computational steps are parallelized with Hadoop MapReduce and executed graphically with Cloudgene. We validated the underlying heteroplasmy and contamination detection model by generating four artificial sample mix-ups on two different NGS devices. Our evaluation data shows that mtDNA-Server detects heteroplasmies and artificial recombinations down to the 1% level with perfect specificity and outperforms existing approaches regarding sensitivity. mtDNA-Server is currently able to analyze the 1000G Phase 3 data (n = 2,504) in less than 5 h and is freely accessible at https://mtdna-server.uibk.ac.at.
PLOS ONE | 2015
Anita Kloss-Brandstätter; Hansi Weissensteiner; Gertraud Erhart; Georg Schäfer; Lukas Forer; Sebastian Schönherr; Dominic Pacher; Christof Seifarth; Andrea Stöckl; Liane Fendt; Irma Sottsas; Helmut Klocker; Christian W. Huck; Michael Rasse; Florian Kronenberg; Frank Kloss
Background Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases. Methods We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base). Results We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases. Conclusions We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.
European Heart Journal | 2017
Stefan Coassin; Gertraud Erhart; Hansi Weissensteiner; Mariana E. G. de Araujo; Claudia Lamina; Sebastian Schönherr; Lukas Forer; Margot Haun; Jamie Lee Losso; Anna Köttgen; Konrad Schmidt; Gerd Utermann; Annette Peters; Christian Gieger; Konstantin Strauch; Armin Finkenstedt; Reto Bale; Heinz Zoller; Bernhard Paulweber; Kai-Uwe Eckardt; Alexander Hüttenhofer; Lukas A. Huber; Florian Kronenberg
Aims Lp(a) concentrations represent a major cardiovascular risk factor and are almost entirely controlled by one single locus (LPA). However, many genetic factors in LPA governing the enormous variance of Lp(a) levels are still unknown. Since up to 70% of the LPA coding sequence are located in a difficult to access hypervariable copy number variation named KIV-2, we hypothesized that it may contain novel functional variants with pronounced effects on Lp(a) concentrations. We performed a large scale mutation analysis in the KIV-2 using an extreme phenotype approach. Methods and Results We compiled an discovery set of 123 samples showing discordance between LPA isoform phenotype and Lp(a) concentrations and controls. Using ultra-deep sequencing, we identified a splice site variant (G4925A) in preferential association with the smaller LPA isoforms. Follow-up in a European general population (n = 2892) revealed an exceptionally high carrier frequency of 22.1% in the general population. The variant explains 20.6% of the Lp(a) variance in carriers of low molecular weight (LMW) apo(a) isoforms (P = 5.75e-38) and reduces Lp(a) concentrations by 31.3 mg/dL. Accordingly the odds ratio for cardiovascular disease was reduced from 1.39 [95% confidence interval (CI): 1.17–1.66, P = 1.89e-04] for wildtype LMW individuals to 1.19 [95%CI: 0.92; 1.56, P = 0.19] in LMW individuals who were additionally positive for G4925A. Functional studies point towards a reduction of splicing efficiency by this novel variant. Conclusion A highly frequent but until now undetected variant in the LPA KIV-2 region is strongly associated with reduced Lp(a) concentrations and reduced cardiovascular risk in LMW individuals.
PLOS ONE | 2013
Hansi Weissensteiner; Margot Haun; Sebastian Schönherr; Mathias Neuner; Lukas Forer; Günther Specht; Anita Kloss-Brandstätter; Florian Kronenberg; Stefan Coassin
Single nucleotide polymorphisms (SNPs) play a prominent role in modern genetics. Current genotyping technologies such as Sequenom iPLEX, ABI TaqMan and KBioscience KASPar made the genotyping of huge SNP sets in large populations straightforward and allow the generation of hundreds of thousands of genotypes even in medium sized labs. While data generation is straightforward, the subsequent data conversion, storage and quality control steps are time-consuming, error-prone and require extensive bioinformatic support. In order to ease this tedious process, we developed SNPflow. SNPflow is a lightweight, intuitive and easily deployable application, which processes genotype data from Sequenom MassARRAY (iPLEX) and ABI 7900HT (TaqMan, KASPar) systems and is extendible to other genotyping methods as well. SNPflow automatically converts the raw output files to ready-to-use genotype lists, calculates all standard quality control values such as call rate, expected and real amount of replicates, minor allele frequency, absolute number of discordant replicates, discordance rate and the p-value of the HWE test, checks the plausibility of the observed genotype frequencies by comparing them to HapMap/1000-Genomes, provides a module for the processing of SNPs, which allow sex determination for DNA quality control purposes and, finally, stores all data in a relational database. SNPflow runs on all common operating systems and comes as both stand-alone version and multi-user version for laboratory-wide use. The software, a user manual, screenshots and a screencast illustrating the main features are available at http://genepi-snpflow.i-med.ac.at.
Experimental Gerontology | 2015
Julia Raschenberger; Barbara Kollerits; Stephanie Titze; Anna Köttgen; Barbara Bärthlein; Arif B. Ekici; Lukas Forer; Sebastian Schönherr; Hansi Weissensteiner; Margot Haun; Christoph Wanner; Kai-Uwe Eckardt; Florian Kronenberg
Telomere length is considered as a biological marker for aging. It is expected that telomeres shorten with age and with conditions associated with oxidative stress and inflammation. Both are present in patients with chronic kidney disease (CKD) who have a very high cardiovascular risk. We investigated whether CKD duration is associated with relative telomere length (RTL) in 4802 patients from the German Chronic Kidney Disease (GCKD) study. We measured RTL in each sample in quadruplicates using a quantitative polymerase chain reaction (qPCR). We observed a U-shaped association of RTL with CKD duration: the longest RTL was found in those 339 patients who reported the shortest disease duration (<6 months) and shorter RTL in 2108 patients with duration between 6 months and less than 5 years. Most importantly, those 2331 patients who reported a CKD duration of 5 years and more had significantly longer RTL compared to those with intermediate CKD duration (6 months to less than 5 years): mean 0.954, 95%CI 0.946-0.961 versus 0.937, 95%CI 0.929-0.944, p=0.002). Due to the cross-sectional nature of the study these surprising results have to be considered with caution and as hypothesis-generating. Whether the longer RTL in patients with long-lasting disease is caused by an activation of telomerase to counteract the shortening of RTL due to oxidative stress and inflammation or whether they are caused by a survival bias needs to be investigated in longitudinal studies. Our data are in support of a higher plasticity of shortening and elongations of RTL as until recently anticipated.
international convention on information and communication technology electronics and microelectronics | 2015
Lukas Forer; Enis Afgan; Hansi Weissensteiner; Davor Davidovic; Günther Specht; Florian Kronenberg; Sebastian Schönherr
The data-driven parallelization framework Hadoop MapReduce allows analysing large data sets in a scalable way. Since the development of MapReduce programs can be a time-intensive and challenging task, the application and usage of Hadoop in Biomedical Research is still limited. Here we present Cloudflow, a high-level framework to hide the implementation details of Hadoop and to provide a set of building blocks to create biomedical pipelines in a more intuitive way. We demonstrate the benefit of Cloudflow on three different genetic use cases. It will be shown how the framework can be combined with the Hadoop workflow system Cloudgene and the cloud orchestration platform CloudMan to provide Hadoop pipelines as a service to everyone.