Hansjoerg Keller
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hansjoerg Keller.
Molecular and Cellular Biology | 2010
Ina Kramer; Christine Halleux; Hansjoerg Keller; Marco Pegurri; Jonathan H. Gooi; Patricia Brander Weber; Jian Q. Feng; Lynda F. Bonewald; Michaela Kneissel
ABSTRACT β-Catenin-dependent canonical Wnt signaling plays an important role in bone metabolism by controlling differentiation of bone-forming osteoblasts and bone-resorbing osteoclasts. To investigate its function in osteocytes, the cell type constituting the majority of bone cells, we generated osteocyte-specific β-catenin-deficient mice (Ctnnb1loxP/loxP; Dmp1-Cre). Homozygous mutants were born at normal Mendelian frequency with no obvious morphological abnormalities or detectable differences in size or body weight, but bone mass accrual was strongly impaired due to early-onset, progressive bone loss in the appendicular and axial skeleton with mild growth retardation and premature lethality. Cancellous bone mass was almost completely absent, and cortical bone thickness was dramatically reduced. The low-bone-mass phenotype was associated with increased osteoclast number and activity, whereas osteoblast function and osteocyte density were normal. Cortical bone Wnt/β-catenin target gene expression was reduced, and of the known regulators of osteoclast differentiation, osteoprotegerin (OPG) expression was significantly downregulated in osteocyte bone fractions of mutant mice. Moreover, the OPG levels expressed by osteocytes were higher than or comparable to the levels expressed by osteoblasts during skeletal growth and at maturity, suggesting that the reduction in osteocytic OPG and the concomitant increase in osteocytic RANKL/OPG ratio contribute to the increased number of osteoclasts and resorption in osteocyte-specific β-catenin mutants. Together, these results reveal a crucial novel function for osteocyte β-catenin signaling in controlling bone homeostasis.
Journal of Bone and Mineral Research | 2007
Olivier Leupin; Ina Kramer; Nicole M. Collette; Gabriela G. Loots; Francois Natt; Michaela Kneissel; Hansjoerg Keller
Expression of the osteocyte‐derived bone formation inhibitor sclerostin in adult bone requires a distant enhancer. We show that MEF2 transcription factors control this enhancer and mediate inhibition of sclerostin expression by PTH.
Journal of Bone and Mineral Research | 2010
Ina Kramer; Gabriela G. Loots; Anne Studer; Hansjoerg Keller; Michaela Kneissel
Intermittent parathyroid hormone (PTH) treatment is a potent bone anabolic principle that suppresses expression of the bone formation inhibitor Sost. We addressed the relevance of Sost suppression for PTH‐induced bone anabolism in vivo using mice with altered Sost gene dosage. Six‐month‐old Sost overexpressing and 2‐month‐old Sost deficient male mice and their wild‐type littermates were subjected to daily injections of 100 µg/kg PTH(1–34) or vehicle for a 2‐month period. A follow‐up study was performed in Sost deficient mice using 40 and 80 µg/kg PTH(1–34). Animals were sacrificed 4 hours after the final PTH administration and Sost expression in long bone diaphyses was determined by qPCR. Bone changes were analyzed in vivo in the distal femur metaphysis by pQCT and ex vivo in the tibia and lumbar spine by DXA. Detailed ex vivo analyses of the femur were performed by pQCT, µCT, and histomorphometry. Overexpression of Sost resulted in osteopenia and Sost deletion in high bone mass. As shown before, PTH suppressed Sost in wild‐type mice. PTH treatment induced substantial increases in bone mineral density, content, and cortical thickness and in aging wild‐type mice also led to cancellous bone gain owing to amplified bone formation rates. PTH‐induced bone gain was blunted at all doses and skeletal sites in Sost overexpressing and deficient mice owing to attenuated bone formation rates, whereas bone resorption was not different from that in PTH‐treated wild‐type controls. These data suggest that suppression of the bone formation inhibitor Sost by intermittent PTH treatment contributes to PTH bone anabolism.
Trends in Endocrinology and Metabolism | 2010
Ina Kramer; Hansjoerg Keller; Olivier Leupin; Michaela Kneissel
Parathyroid hormone (PTH) has bone anabolic activity when administered intermittently, affecting cells of the osteoblastic lineage at various stages, yet much remains to be learned about precisely how PTH promotes osteoblastic bone formation. Recent discoveries revealed that PTH causes transcriptional suppression of the osteocyte marker gene SOST, which encodes the potent secreted bone formation inhibitor, sclerostin. This review addresses whether osteocytes, terminally differentiated cells of the osteoblastic lineage, which are entrapped within the mineralized bone matrix, contribute to PTH-induced bone formation responses via regulation of sclerostin levels, and discusses recent evidence on how the bone anabolic responses elicited by intermittent PTH treatment or by sclerostin inhibition overlap and diverge.
Journal of Bone and Mineral Research | 2012
Ina Kramer; Stefan Baertschi; Christine Halleux; Hansjoerg Keller; Michaela Kneissel
Myocyte enhancer factors 2 (MEF2) are required for expression of the osteocyte bone formation inhibitor Sost in vitro, implying these transcription factors in bone biology. Here, we analyzed the in vivo function of Mef2c in osteocytes in male and female mice during skeletal growth and aging. Dmp1‐Cre–induced Mef2c deficiency led to progressive decreases in Sost expression by 40% and 70% in femoral cortical bone at 3.5 months and 5 to 6 months of age. From 2 to 3 months onward, bone mass was increased in the appendicular and axial skeleton of Mef2c mutant relative to control mice. Cortical thickness and long bone and vertebral trabecular density were elevated. To assess whether the increased bone mass was related to the decreased Sost expression, we characterized 4‐month‐old heterozygous Sost‐deficient mice. Sost heterozygotes displayed similar increases in long bone mass and density as Mef2c mutants, but the relative increases in axial skeletal parameters were mostly smaller. At the cellular level, bone formation parameters were normal in 3.5‐month‐old Mef2c mutant mice, whereas bone resorption parameters were significantly decreased. Correspondingly, cortical expression of the anti‐osteoclastogenic factor and Wnt/β‐catenin target gene osteoprotegerin (OPG) was increased by 70% in Mef2c mutant males. Furthermore, cortical expression of the Wnt signaling modulators Sfrp2 and Sfrp3 was strongly deregulated in both sexes. In contrast, heterozygous Sost deficient males displayed mildly increased osteoblastic mineral apposition rate, but osteoclast surface and cortical expression of osteoclastogenic regulators including OPG were normal and Sfrp2 and Sfrp3 were not significantly changed. Together, our data demonstrate that Mef2c regulates cortical Sfrp2 and Sfrp3 expression and is required to maintain normal Sost expression in vivo. Yet, the increased bone mass phenotype of Mef2c mutants is not directly related to the reduced Sost expression. We identified a novel function for Mef2c in control of adult bone mass by regulation of osteoclastic bone resorption.
Journal of Bone and Mineral Research | 2014
Ming-Kang Chang; Ina Kramer; Hansjoerg Keller; Jonathan H. Gooi; Corinne Collett; David Jenkins; Seth Ettenberg; Feng Cong; Christine Halleux; Michaela Kneissel
The bone formation inhibitor sclerostin encoded by SOST binds in vitro to low‐density lipoprotein receptor‐related protein (LRP) 5/6 Wnt co‐receptors, thereby inhibiting Wnt/β‐catenin signaling, a central pathway of skeletal homeostasis. Lrp5/LRP5 deficiency results in osteoporosis‐pseudoglioma (OPPG), whereas Sost/SOST deficiency induces lifelong bone gain in mice and humans. Here, we analyzed the bone phenotype of mice lacking Sost (Sost−/−), Lrp5 (Lrp5−/−), or both (Sost−/−;Lrp5−/−) to elucidate the mechanism of action of Sost in vivo. Sost deficiency–induced bone gain was significantly blunted in Sost−/−;Lrp5−/− mice. Yet the Lrp5 OPPG phenotype was fully rescued in Sost−/−;Lrp5−/− mice and most bone parameters were elevated relative to wild‐type. To test whether the remaining bone increases in Sost−/−;Lrp5−/− animals depend on Lrp6, we treated wild‐type, Sost−/−, and Sost−/−;Lrp5−/− mice with distinct Lrp6 function blocking antibodies. Selective blockage of Wnt1 class–mediated Lrp6 signaling reduced cancellous bone mass and density in wild‐type mice. Surprisingly, it reversed the abnormal bone gain in Sost−/− and Sost−/−;Lrp5−/− mice to wild‐type levels irrespective of enhancement or blockage of Wnt3a class‐mediated Lrp6 activity. Thus, whereas Sost deficiency–induced bone anabolism partially requires Lrp5, it fully depends on Wnt1 class–induced Lrp6 activity. These findings indicate: first, that OPPG syndrome patients suffering from LRP5 loss‐of‐function should benefit from principles antagonizing SOST/sclerostin action; and second, that therapeutic WNT signaling inhibitors may stop the debilitating bone overgrowth in sclerosing disorders related to SOST deficiency, such as sclerosteosis, van Buchem disease, and autosomal dominant craniodiaphyseal dysplasia, which are rare disorders without viable treatment options.
Bone | 2003
S Marrony; F Bassilana; Klaus Seuwen; Hansjoerg Keller
Bone-forming osteoblasts differentiate from pluripotent mesenchymal stem cells (MSCs) in a multistage process that can be modeled in vitro using MSCs isolated from adult human trabecular bone or bone marrow. To identify new genes involved in osteoblast differentiation, we have performed large-scale gene expression profiling using high-density cDNA microarrays in primary human MSCs treated with the known osteogenic agent bone morphogenetic protein 2 (BMP-2). The vascular endothelial growth factor (VEGF) family member placental growth factor (PlGF) was found as an early regulated gene whose induction was already detected after 2 h treatment with BMP-2. Tissue distribution analysis of PlGF mRNA expression using microarrays revealed a very restricted expression of PlGF only in BMP-2-treated MSCs and in placenta as expected. Ribonuclease protection assay (RPA) confirmed the induction of PlGF and showed preferential expression of the PlGF-1 isoform over PLGF-2 in MSCs and MG63 cells. BMP-2 stimulated PlGF expression in MG63 cells with an EC50 of about 50 ng/ml and mRNA levels peaked between 24 and 32 h after stimulation. Furthermore, induction of PlGF by BMP-2 appeared specific, as other osteogenic agents including vitamin D3, transforming growth factor beta, and basic fibroblast growth factor were inactive. BMP-2 stimulated PlGF secretion from MG63 and MSC cells, but PlGF had no effect on MSC proliferation and osteoblastic differentiation. Based on the known function of PlGF in the recruitment of endothelial and hematopoietic stem cells, these results suggest a paracrine role for MSC-derived PlGF in the angiogenesis and hematopoiesis that accompany BMP-2-induced bone formation.
Bone | 2012
Gabriela G. Loots; Hansjoerg Keller; Olivier Leupin; Deepa K. Murugesh; Nicole M. Collette; Damian C. Genetos
Wnt signaling is critical for skeletal development and homeostasis. Sclerostin (Sost) has emerged as a potent inhibitor of Wnt signaling and, thereby, bone formation. Thus, strategies to reduce sclerostin expression may be used to treat osteoporosis or non-union fractures. Transforming growth factor-beta (TGF-β) elicits various effects upon the skeleton both in vitro and in vivo depending on the duration and timing of administration. In vitro and in vivo studies demonstrate that TGF-β increases osteoprogenitor differentiation but decreases matrix mineralization of committed osteoblasts. Because sclerostin decreases matrix mineralization, this study aimed to examine whether TGF-β achieves such inhibitory effects via transcriptional modulation of Sost. Using the UMR106.01 mature osteoblast cell line, we demonstrated that TGF-βTGF-β(1)-β(2)-β(3) and Activin A increase Sost transcript expression. Pharmacologic inhibition of Alk4/5/7 in vitro and in vivo decreased endogenous Sost expression, and siRNA against Alk4 and Alk5 demonstrated their requirement for endogenous Sost expression. TGF-β(1) targeted the Sost bone enhancer ECR5 and did not affect the transcriptional activity of the endogenous Sost promoter. These results indicate that TGF-β(1) controls Sost transcription in mature osteoblasts, suggesting that sclerostin may mediate the inhibitory effect of TGF-β upon osteoblast differentiation.
Journal of Biological Chemistry | 2014
Stefan Baertschi; Nina Baur; Valerie Lueders-Lefevre; Johannes Voshol; Hansjoerg Keller
Background: Gene regulation of the bone repressor sclerostin (SOST) is only poorly understood. Results: SOST gene suppression by parathyroid hormone is partially mediated by HDAC5 inhibiting MEF2, and SOST gene expression requires class I HDAC activity. Conclusion: SOST gene expression is negatively regulated by HDAC5 and positively by class I HDACs. Significance: Class I HDAC inhibitors represent a novel approach for bone forming osteoporosis therapies. Adult bone mass is controlled by the bone formation repressor sclerostin (SOST). Previously, we have shown that intermittent parathyroid hormone (PTH) bone anabolic therapy involves SOST expression reduction by inhibiting myocyte enhancer factor 2 (MEF2), which activates a distant bone enhancer. Here, we extended our SOST gene regulation studies by analyzing a role of class I and IIa histone deacetylases (HDACs), which are known regulators of MEF2s. Expression analysis using quantitative PCR (qPCR) showed high expression of HDACs 1 and 2, lower amounts of HDACs 3, 5, and 7, low amounts of HDAC4, and no expression of HDACs 8 and 9 in constitutively SOST-expressing UMR106 osteocytic cells. PTH-induced Sost suppression was associated with specific rapid nuclear accumulation of HDAC5 and co-localization with MEF2s in nuclear speckles requiring serine residues 259 and 498, whose phosphorylations control nucleocytoplasmic shuttling. Increasing nuclear levels of HDAC5 in UMR106 by blocking nuclear export with leptomycin B (LepB) or overexpression in transient transfection assays inhibited endogenous Sost transcription and reporter gene expression, respectively. This repressor effect of HDAC5 did not require catalytic activity using specific HDAC inhibitors. In contrast, inhibition of class I HDAC activities and expression using RNA interference suppressed constitutive Sost expression in UMR106 cells. An unbiased comprehensive search for involved HDAC targets using an acetylome analysis revealed several non-histone proteins as candidates. These findings suggest that PTH-mediated Sost repression involves nuclear accumulation of HDAC inhibiting the MEF2-dependent Sost bone enhancer, and class I HDACs are required for constitutive Sost expression in osteocytes.
Journal of Medicinal Chemistry | 2014
Thomas Ullrich; Sanjita Sasmal; Venkatesham Boorgu; Srinivasu Pasagadi; Srisailam Cheera; Sujatha Rajagopalan; Archana Bhumireddy; Dhanya Shashikumar; Shekar Chelur; Charamanna Belliappa; Chetan Pandit; Narasimharao Krishnamurthy; Subhendu Mukherjee; Anuradha Ramanathan; Chakshusmathi Ghadiyaram; Murali Ramachandra; Paulo G. Santos; Bharat Lagu; Mark G. Bock; Mark H. Perrone; Sven Weiler; Hansjoerg Keller
We describe the synthesis and characterization of 3-alkoxy-pyrrolo[1,2-b]pyrazolines as novel selective androgen receptor (AR) modulators that possess excellent physicochemical properties for transdermal administration. Compound 26 bound to human AR with an IC50 of 0.7 nM with great selectivity over other nuclear hormone receptors and potently activated AR in a C2C12 muscle cell reporter gene assay with an EC50 of 0.5 nM. It showed high aqueous solubility of 1.3 g/L at pH 7.4, and an in silico model as well as a customized parallel artificial membrane permeability assay indicated good skin permeation. Indeed, when measuring skin permeation through excised human skin, an excellent flux of 2 μg/(cm(2)·h) was determined without any permeation enhancers. In a 2 week Hershberger model using castrated rats, the compound showed dose-dependent effects fully restoring skeletal muscle weight at 0.3 mg/kg/day after subcutaneous administration with high selectivity over prostate stimulation.