Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hansjörg Rindt is active.

Publication


Featured researches published by Hansjörg Rindt.


Human Molecular Genetics | 2010

Spinal muscular atrophy: mechanisms and therapeutic strategies

Christian L. Lorson; Hansjörg Rindt; Monir Shababi

Spinal muscular atrophy (SMA) is an autosomal recessive neurodegenerative disorder and a leading genetic cause of infantile mortality. SMA is caused by mutation or deletion of Survival Motor Neuron-1 (SMN1). The clinical features of the disease are caused by specific degeneration of alpha-motor neurons in the spinal cord, leading to muscle weakness, atrophy and, in the majority of cases, premature death. A highly homologous copy gene (SMN2) is retained in almost all SMA patients but fails to generate adequate levels of SMN protein due to its defective splicing pattern. The severity of the SMA phenotype is inversely correlated with SMN2 copy number and the level of full-length SMN protein produced by SMN2 ( approximately 10-15% compared with SMN1). The natural history of SMA has been altered over the past several decades, primarily through supportive care measures, but an effective treatment does not presently exist. However, the common genetic etiology and recent progress in pre-clinical models suggest that SMA is well-suited for the development of therapeutic regimens. We summarize recent advances in translational research that hold promise for the progression towards clinical trials.


Human Molecular Genetics | 2009

Delivery of recombinant follistatin lessens disease severity in a mouse model of spinal muscular atrophy

Ferrill F. Rose; Virginia B. Mattis; Hansjörg Rindt; Christian L. Lorson

Spinal muscular atrophy (SMA) is the most common genetic cause of infant mortality. SMA is caused by loss of functional survival motor neuron 1 (SMN1), resulting in death of spinal motor neurons. Current therapeutic research focuses on modulating the expression of a partially functioning copy gene, SMN2, which is retained in SMA patients. However, a treatment strategy that improves the SMA phenotype by slowing or reversing the skeletal muscle atrophy may also be beneficial. Myostatin, a member of the TGF-beta super-family, is a potent negative regulator of skeletal muscle mass. Follistatin is a natural antagonist of myostatin, and over-expression of follistatin in mouse muscle leads to profound increases in skeletal muscle mass. To determine whether enhanced muscle mass impacts SMA, we administered recombinant follistatin to an SMA mouse model. Treated animals exhibited increased mass in several muscle groups, elevation in the number and cross-sectional area of ventral horn cells, gross motor function improvement and mean lifespan extension by 30%, by preventing some of the early deaths, when compared with control animals. SMN protein levels in spinal cord and muscle were unchanged in follistatin-treated SMA mice, suggesting that follistatin exerts its effect in an SMN-independent manner. Reversing muscle atrophy associated with SMA may represent an unexploited therapeutic target for the treatment of SMA.


Human Molecular Genetics | 2015

Astrocytes influence the severity of spinal muscular atrophy

Hansjörg Rindt; Zhihua Feng; Chiara Mazzasette; Jacqueline J. Glascock; David Valdivia; Noah Pyles; Thomas O. Crawford; Kathryn J. Swoboda; Teresa N. Patitucci; Allison D. Ebert; Charlotte J. Sumner; Chien-Ping Ko; Christian L. Lorson

Systemically low levels of survival motor neuron-1 (SMN1) protein cause spinal muscular atrophy (SMA). α-Motor neurons of the spinal cord are considered particularly vulnerable in this genetic disorder and their dysfunction and loss cause progressive muscle weakness, paralysis and eventually premature death of afflicted individuals. Historically, SMA was therefore considered a motor neuron-autonomous disease. However, depletion of SMN in motor neurons of normal mice elicited only a very mild phenotype. Conversely, restoration of SMN to motor neurons in an SMA mouse model had only modest effects on the SMA phenotype and survival. Collectively, these results suggested that additional cell types contribute to the pathogenesis of SMA, and understanding the non-autonomous requirements is crucial for developing effective therapies. Astrocytes are critical for regulating synapse formation and function as well as metabolic support for neurons. We hypothesized that astrocyte functions are disrupted in SMA, exacerbating disease progression. Using viral-based restoration of SMN specifically to astrocytes, survival in severe and intermediate SMA mice was observed. In addition, neuromuscular circuitry was improved. Astrogliosis was prominent in end-stage SMA mice and in post-mortem patient spinal cords. Increased expression of proinflammatory cytokines was partially normalized in treated mice, suggesting that astrocytes contribute to the pathogenesis of SMA.


Human Molecular Genetics | 2013

Development and characterization of an SMN2-based intermediate mouse model of Spinal Muscular Atrophy

Melissa S. Cobb; Ferril F. Rose; Hansjörg Rindt; Jacqueline J. Glascock; Monir Shababi; Madeline R. Miller; Erkan Y. Osman; Pei-Fen Yen; Michael L. Garcia; Brittanie R. Martin; Mary J. Wetz; Chiara Mazzasette; Zhihua Feng; Chien-Ping Ko; Christian L. Lorson

Spinal Muscular Atrophy (SMA) is due to the loss of the survival motor neuron gene 1 (SMN1), resulting in motor neuron (MN) degeneration, muscle atrophy and loss of motor function. While SMN2 encodes a protein identical to SMN1, a single nucleotide difference in exon 7 causes most of the SMN2-derived transcripts to be alternatively spliced resulting in a truncated and unstable protein (SMNΔ7). SMA patients retain at least one SMN2 copy, making it an important target for therapeutics. Many of the existing SMA models are very severe, with animals typically living less than 2 weeks. Here, we present a novel intermediate mouse model of SMA based upon the human genomic SMN2 gene. Genetically, this model is similar to the well-characterized SMNΔ7 model; however, we have manipulated the SMNΔ7 transgene to encode a modestly more functional protein referred to as SMN read-through (SMN(RT)). By introducing the SMN(RT) transgene onto the background of a severe mouse model of SMA (SMN2(+/+);Smn(-/-)), disease severity was significantly decreased based upon a battery of phenotypic parameters, including MN pathology and a significant extension in survival. Importantly, there is not a full phenotypic correction, allowing for the examination of a broad range of therapeutics, including SMN2-dependent and SMN-independent pathways. This novel animal model serves as an important biological and therapeutic model for less severe forms of SMA and provides an in vivo validation of the SMN(RT) protein.


Neuromuscular Disorders | 2012

Transgenic inactivation of murine myostatin does not decrease the severity of disease in a model of Spinal Muscular Atrophy

Hansjörg Rindt; Desire M. Buckley; Spencer M. Vale; Megan M. Krogman; Ferrill F. Rose; Michael L. Garcia; Christian L. Lorson

Spinal Muscular Atrophy (SMA) is a devastating neurodegenerative disease and is a leading genetic cause of infantile death. SMA is caused by the homozygous loss of Survival Motor Neuron-1 (SMN1). The presence of a nearly identical copy gene called SMN2 has led to the development of several strategies that are designed to elevate SMN levels, and it is clear that SMN2 is an important modifier gene. However, the possibility exists that SMN-independent strategies to lessen the severity of the SMA phenotype could provide insight into disease development as well as aid in the identification of potential therapeutic targets. Muscle enhancement has been considered an interesting target for a variety of neurodegenerative diseases, including SMA. Previously we have shown in SMA mice that delivery of recombinant follistatin resulted in an extension in survival and a general lessening of disease severity. Follistatin is known to functionally block myostatin (MSTN), a potent inhibitor of muscle development. However, follistatin is a multifaceted protein involved in a variety of cellular pathways. To determine whether MSTN inhibition was the primary pathway associated with the previously reported follistatin results, we generated an animal model of SMA in which Mstn was genetically inactivated. In this report we characterize the novel SMA/Mstn model and demonstrate that Mstn inactivation does not significantly enhance muscle development in neonatal animals, nor does it result in an amelioration of the SMA phenotype.


Cellular and Molecular Life Sciences | 2012

Replacement of huntingtin exon 1 by trans-splicing

Hansjörg Rindt; Pei-Fen Yen; Christina N. Thebeau; Troy S. Peterson; Gary A. Weisman; Christian L. Lorson

Huntington’s disease (HD) is an autosomal-dominant neurodegenerative disorder caused by polyglutamine expansion in the amino-terminus of huntingtin (HTT). HD offers unique opportunities for promising RNA-based therapeutic approaches aimed at reducing mutant HTT expression, since the HD mutation is considered to be a “gain-of-function” mutation. Allele-specific strategies that preserve expression from the wild-type allele and reduce the levels of mutant protein would be of particular interest. Here, we have conducted proof-of-concept studies to demonstrate that spliceosome-mediated trans-splicing is a viable molecular strategy to specifically repair the HTT allele. We employed a dual plasmid transfection system consisting of a pre-mRNA trans-splicing module (PTM) containing HTT exon 1 and a HTT minigene to demonstrate that HTT exon 1 can be replaced in trans. We detected the presence of the trans-spliced RNA in which PTM exon 1 was correctly joined to minigene exons 2 and 3. Furthermore, exon 1 from the PTM was trans-spliced to the endogenous HTT pre-mRNA in cultured cells as well as disease-relevant models, including HD patient fibroblasts and primary neurons from a previously described HD mouse model. These results suggest that the repeat expansion of HTT can be repaired successfully not only in the context of synthetic minigenes but also within the context of HD neurons. Therefore, pre-mRNA trans-splicing may be a promising approach for the treatment of HD and other dominant genetic disorders.


PLOS ONE | 2016

Composition and Predicted Metabolic Capacity of Upper and Lower Airway Microbiota of Healthy Dogs in Relation to the Fecal Microbiota.

Aaron C. Ericsson; Alexa R. Personett; Megan Grobman; Hansjörg Rindt; Carol R. Reinero

The upper and lower airways of healthy humans are reported to harbor stable and consistent bacterial populations, and the composition of these communities is altered in individuals affected with several respiratory diseases. Data regarding the presence of airway microbiota in other animals are scant and a better understanding of the composition and metabolic function of such bacterial populations is essential for the development of novel therapeutic and diagnostic modalities for use in both veterinary and human medicine. Based on targeted next-generation sequencing of feces and samples collected at multiple levels of the airways from 16 healthy female dogs, we demonstrate that canine airways harbor a topographically continuous microbiota with increasing relative abundance of proteobacterial species from the upper to lower airways. The lung-associated microbiota, as assessed via bronchoalveolar lavage fluid (BALF), was the most consistent between dogs and was dominated by three distinct taxa, two of which were resolved to the species level and one to the level of family. The gene content of the nasal, oropharyngeal, and lung-associated microbiota, predicted using the Phylogenetic Investigations into Communities by Reconstruction of Unobserved States (PICRUSt) software, provided information regarding the glyoxylate and citrate cycle metabolic pathways utilized by these bacterial populations to colonize such nutrient-poor, low-throughput environments. These data generated in healthy subjects provide context for future analysis of diseased canine airways. Moreover, as dogs have similar respiratory anatomy, physiology, and immune systems as humans, are exposed to many of the same environmental stimuli, and spontaneously develop similar respiratory diseases, these data support the use of dogs as a model species for prospective studies of the airway microbiota, with findings translatable to the human condition.


PLOS ONE | 2017

Dynamic changes of the respiratory microbiota and its relationship to fecal and blood microbiota in healthy young cats.

Aida I. Vientós-Plotts; Aaron C. Ericsson; Hansjörg Rindt; Megan Grobman; Amber Graham; Kaitlin Bishop; Leah A. Cohn; Carol R. Reinero

Advances in the field of metagenomics using culture-independent methods of microbial identification have allowed characterization of rich and diverse communities of bacteria in the lungs of healthy humans, mice, dogs, sheep and pigs. These data challenge the long held belief that the lungs are sterile and microbial colonization is synonymous with pathology. Studies in humans and animals demonstrate differences in the composition of airway microbiota in health versus disease suggesting respiratory dysbiosis occurs. Using 16S rRNA amplicon sequencing of DNA extracted from rectal and oropharyngeal (OP) swabs, bronchoalveolar lavage fluid (BALF), and blood, our objective was to characterize the fecal, OP, blood, and lower airway microbiota over time in healthy cats. This work in healthy cats, a species in which a respiratory microbiota has not yet been characterized, sets the stage for future studies in feline asthma in which cats serve as a comparative and translational model for humans. Fecal, OP and BALF samples were collected from six healthy research cats at day 0, week 2, and week 10; blood was collected at week 10. DNA was extracted, amplified via PCR, and sequenced using the Illumina MiSeq platform. Representative operational taxonomic units (OTUs) were identified and microbial richness and diversity were assessed. Principal component analysis (PCA) was used to visualize relatedness of samples and PERMANOVA was used to test for significant differences in microbial community composition. Fecal and OP swabs provided abundant DNA yielding a mean±SEM of 65,653±6,145 and 20,6323±4,360 sequences per sample, respectively while BALF and blood samples had lower coverage (1,489±430 and 269±18 sequences per sample, respectively). Oropharyngeal and fecal swabs were significantly richer than BALF (mean number OTUs 93, 88 and 36, respectively; p < 0.001) with no significant difference (p = 0.180) in richness between time points. PCA revealed site-specific microbial communities in the feces, and upper and lower airways. In comparison, blood had an apparent compositional similarity with BALF with regard to a few dominant taxa, but shared more OTUs with feces. Samples clustered more by time than by individual, with OP swabs having subjectively greater variation than other samples. In summary, healthy cats have a rich and distinct lower airway microbiome with dynamic bacterial populations. The microbiome is likely to be altered by factors such as age, environmental influences, and disease states. Further data are necessary to determine how the distinct feline microbiomes from the upper and lower airways, feces and blood are established and evolve. These data are relevant for comparisons between healthy cats and cats with respiratory disease.


Frontiers in Microbiology | 2017

Oral Probiotics Alter Healthy Feline Respiratory Microbiota

Aida I. Vientós-Plotts; Aaron C. Ericsson; Hansjörg Rindt; Carol R. Reinero

Probiotics have been advocated as a novel therapeutic approach to respiratory disease, but knowledge of how oral administration of probiotics influences the respiratory microbiota is needed. Using 16S rRNA amplicon sequencing of bacterial DNA our objective was to determine whether oral probiotics changed the composition of the upper and lower airway, rectal, and blood microbiota. We hypothesized that oral probiotics would modulate the respiratory microbiota in healthy cats, demonstrated by the detection and/or increased relative abundance of the probiotic bacterial species and altered composition of the microbial population in the respiratory tract. Six healthy young research cats had oropharyngeal (OP), bronchoalveolar lavage fluid (BALF), rectal, and blood samples collected at baseline and 4 weeks after receiving oral probiotics. 16S rRNA gene amplicon libraries were sequenced, and coverage, richness, and relative abundance of representative operational taxonomic units (OTUs) were determined. Hierarchical and principal component analyses (PCA) demonstrated relatedness of samples. Mean microbial richness significantly increased only in the upper and lower airways. The number of probiotic OTUs (out of 5 total) that significantly increased in relative abundance vs. baseline was 5 in OP, 3 in BAL and 2 in feces. Using hierarchical clustering, BALF and blood samples grouped together after probiotic administration, and PERMANOVA supported that these two sites underwent significant changes in microbial composition. PERMANOVA revealed that OP and rectal samples had microbial population compositions that did not significantly change. These findings were visualized via PCA, which revealed distinct microbiomes in each site; samples clustered more tightly at baseline and had more variation after probiotic administration. This is the first study describing the effect of oral probiotics on the respiratory microbiota via detection of probiotic species in the airways. Finding bacterial species present in the oral probiotics in the upper and lower airways provides pilot data suggesting that oral probiotics could serve as a tool to target dysbiosis occurring in inflammatory airway diseases such as feline asthma, a disease in which cats serve as an important comparative and translational model for humans.


Journal of Veterinary Internal Medicine | 2017

Serum Thymidine Kinase 1, Canine-C-Reactive Protein, Haptoglobin, and Vitamin D Concentrations in Dogs with Immune-Mediated Hemolytic Anemia, Thrombocytopenia, and Polyarthropathy

Megan Grobman; H. Outi; Hansjörg Rindt; Carol R. Reinero

Background Relapses of immune‐mediated hemolytic anemia (IMHA), thrombocytopenia (ITP), or polyarthropathy (IMPA) occur despite normal hematologic and cytologic parameters. Thymidine kinase 1 (TK1), canine C‐reactive protein (c‐CRP), haptoglobin (HPT), and 25‐Hydroxyvitamin‐D (25(OH)D) might be adjunct to current monitoring strategies. Hypothesis/Objectives Compare serum concentrations of TK1, c‐CRP, HPT, and 25(OH)D in dogs with well‐ and poorly controlled primary IMHA, ITP, or IMPA. Animals Thirty‐eight client‐owned dogs. Methods Prospective descriptive study. Dogs diagnosed with IMHA, ITP, or IMPA had serum biomarker concentrations measured commercially. Disease control was assessed by hematocrit/PCV and reticulocyte count, platelet count, and synovial fluid cytology for IMHA, ITP, and IMPA, respectively. Statistical analysis performed by Mann‐Whitney rank‐sum tests and receiver operating characteristic curves. Results TK1 and c‐CRP, but not HPT significantly decreased with well‐ versus poorly controlled IMHA (P = 0.047, P = 0.028, P = 0.37). C‐CRP, but not TK or HPT was significantly lower with well‐ versus poorly controlled IMPA (P = 0.05, P = 0.28, P = 0.84). Sensitivity and specificity of TK and c‐CRP (simultaneously) for detecting dogs with poorly controlled IMHA were 88 and 100%, respectively. Sensitivity and specificity of c‐CRP for detecting poorly controlled dogs with IMPA were 13 and 100%, respectively. 92% of dogs were vitamin D insufficient (<100 ng/mL) regardless of disease control. Conclusions and Clinical Importance Combining TK1 and c‐CRP might act markers of disease control in dogs with IMHA. Canine‐CRP cannot be recommended as an independent marker of disease control in IMPA. 25(OH)D insufficiency in immune‐mediated disorders might benefit from further study to determine if supplementation could improve therapeutic response or reduce disease risk.

Collaboration


Dive into the Hansjörg Rindt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chiara Mazzasette

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Chien-Ping Ko

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge