Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanspeter Stalder is active.

Publication


Featured researches published by Hanspeter Stalder.


Veterinary Research | 2010

Cytopathic bovine viral diarrhea viruses (BVDV): emerging pestiviruses doomed to extinction

Ernst Peterhans; Claudia Bachofen; Hanspeter Stalder; Matthias Schweizer

Bovine viral diarrhea virus (BVDV), a Flaviviridae pestivirus, is arguably one of the most widespread cattle pathogens worldwide. Each of its two genotypes has two biotypes, non-cytopathic (ncp) and cytopathic (cp). Only the ncp biotype of BVDV may establish persistent infection in the fetus when infecting a dam early in gestation, a time point which predates maturity of the adaptive immune system. Such fetuses may develop and be born healthy but remain infected for life. Due to this early initiation of fetal infection and to the expression of interferon antagonistic proteins, persistently infected (PI) animals remain immunotolerant to the infecting viral strain. Although only accounting for some 1% of all animals in regions where BVDV is endemic, PI animals ensure the viral persistence in the host population. These animals may, however, develop the fatal mucosal disease, which is characterized by widespread lesions in the gastrointestinal tract. Cp BVD virus, in addition to the persisting ncp biotype, can be isolated from such animals. The cp viruses are characterized by unrestrained genome replication, and their emergence from the persisting ncp ones is due to mutations that are unique in each virus analyzed. They include recombinations with host cell mRNA, gene translocations and duplications, and point mutations. Cytopathic BVD viruses fail to establish chains of infection and are unable to cause persistent infection. Hence, these viruses illustrate a case of “viral emergence to extinction” – irrelevant for BVDV evolution, but fatal for the PI host.


Journal of Virology | 2006

“Self” and “Nonself” Manipulation of Interferon Defense during Persistent Infection: Bovine Viral Diarrhea Virus Resists Alpha/Beta Interferon without Blocking Antiviral Activity against Unrelated Viruses Replicating in Its Host Cells

Matthias Schweizer; Philippe Mätzener; Gabriela Pfaffen; Hanspeter Stalder; Ernst Peterhans

ABSTRACT Bovine viral diarrhea virus (BVDV), together with Classical swine fever virus (CSFV) and Border disease virus (BDV) of sheep, belongs to the genus Pestivirus of the Flaviviridae. BVDV is either cytopathic (cp) or noncytopathic (ncp), as defined by its effect on cultured cells. Infection of pregnant animals with the ncp biotype may lead to the birth of persistently infected calves that are immunotolerant to the infecting viral strain. In addition to evading the adaptive immune system, BVDV evades key mechanisms of innate immunity. Previously, we showed that ncp BVDV inhibits the induction of apoptosis and alpha/beta interferon (IFN-α/β) synthesis by double-stranded RNA (dsRNA). Here, we report that (i) both ncp and cp BVDV block the induction by dsRNA of the Mx protein (which can also be induced in the absence of IFN signaling); (ii) neither biotype blocks the activity of IFN; and (iii) once infection is established, BVDV is largely resistant to the activity of IFN-α/β but (iv) does not interfere with the establishment of an antiviral state induced by IFN-α/β against unrelated viruses. The results of our study suggest that, in persistent infection, BVDV is able to evade a central element of innate immunity directed against itself without generally compromising its activity against unrelated viruses (“nonself”) that may replicate in cells infected with ncp BVDV. This highly selective “self” and “nonself” model of evasion of the interferon defense system may be a key element in the success of persistent infection in addition to immunotolerance initiated by the early time point of fetal infection.


Journal of Veterinary Diagnostic Investigation | 2007

Comparison of five diagnostic methods for detecting bovine viral diarrhea virus infection in calves

Monika Hilbe; Hanspeter Stalder; Ernst Peterhans; Michael Haessig; Marlies Nussbaumer; Christoph Egli; Christian Schelp; K. Zlinszky; F. Ehrensperger

Five diagnostic techniques performed on skin biopsies (shoulder region) and/or serum were compared for detection of bovine viral diarrhea virus infection in 224 calves 0–3 months of age, 23 calves older than 3 months but younger than 7 months, and 11 cattle older than 7 months. The diagnostic methods used were immunohistochemistry (IHC), 2 commercial antigen ELISAs, 1 commercial antibody ELISA, and realtime RT-PCR. Results of 249 out of 258 skin and serum samples were identical and correlated within the 3 antigen detection methods and the real-time RT-PCR used. Twenty-six of these 249 samples were BVDV-positive with all antigen detection methods and the real-time RT-PCR. Nine out of 258 samples yielding discordant results were additionally examined by RT-PCR, RT-PCR Reamplification (ReA), and antigen ELISA I on serum and by immunohistochemistry on formalin fixed and paraffin-embedded skin biopsies. Virus isolation and genotyping was performed as well on these discordant samples. In 3 cases, transiently infected animals were identified. Two samples positive by real-time RT-PCR were interpreted as false positive and were ascribed to cross-contamination. The antigen ELISA II failed to detect 2 BVDV-positive calves due to the presence of maternal antibodies; the cause of 2 false-positive cases in this ELISA remained undetermined. Only persistently infected animals were identified in skin samples by IHC or antigen ELISA I. The 3 antigen detection methods and the real-time RT-PCR used in parallel had a high correlation rate (96.5%) and similar sensitivity and specificity values.


BMC Veterinary Research | 2012

Bovine viral diarrhea virus in free-ranging wild ruminants in Switzerland: low prevalence of infection despite regular interactions with domestic livestock

Julien Casaubon; Hans-Rudolf Vogt; Hanspeter Stalder; Corinne Hug; Marie-Pierre Ryser-Degiorgis

BackgroundIn the frame of an eradication program for bovine viral diarrhea (BVD) in Swiss livestock, the question was raised whether free-ranging wildlife could threaten the success of this sanitary measure. Therefore, we conducted serological and virological investigations on BVD virus (BVDV) infections in the four indigenous wild ruminant species (roe deer, red deer, Alpine chamois and Alpine ibex) from 2009 to 2011, and gathered information on interactions between wild and domestic ruminants in an alpine environment by questionnaire survey.ResultsThirty-two sera out of 1’877 (1.7%, 95% confidence interval [CI] 1.2-2.4) were seropositive for BVDV, and a BVDV1 sub genotype h virus was found in a seropositive chamois (0.05%, 95% CI 0.001-0.3). The seropositive animals originated from sub-alpine or alpine regions and significantly more seropositive red deer, chamois and ibex than roe deer were found. There were no statistically significant differences between sampling units, age classes, genders, and sampling years. The obtained prevalences were significantly lower than those documented in livestock, and most positive wild ruminants were found in proximity of domestic outbreaks. Additionally, BVDV seroprevalence in ibex was significantly lower than previously reported from Switzerland. The survey on interspecific interactions revealed that interactions expected to allow BVDV transmission, from physical contacts to non-simultaneous use of the same areas, regularly occur on pastures among all investigated ruminant species. Interactions involving cervids were more often observed with cattle than with small ruminants, chamois were observed with all three domestic species, and ibex interacted mostly with small ruminants. Interactions related to the use of anthropogenic food sources were frequently observed, especially between red deer and cattle in wintertime.ConclusionsTo our knowledge, this is the first report of BVDV RNA isolated from an Alpine chamois. Nevertheless, our results suggest that BVDV infections are only sporadic in Swiss wild ruminants, despite regular occurrence of interactions with potentially infected livestock. Overall, serological, virological and ethological data indicate that wildlife is currently an incidental spill-over host and not a reservoir for BVDV in Switzerland.


Veterinary Microbiology | 2010

Clinical appearance and pathology of cattle persistently infected with bovine viral diarrhoea virus of different genetic subgroups

Claudia Bachofen; U. Braun; Monika Hilbe; F. Ehrensperger; Hanspeter Stalder; Ernst Peterhans

Abstract Bovine viral diarrhoea (BVD) is an economically important cattle disease with a world-wide distribution that is caused by BVD virus, a pestivirus of the flaviviridae family. BVD viruses are genetically highly variable. They are classified into two genetic species (BVDV-1 and -2) that are further divided into numerous subgroups, particularly for BVDV-1. The complexity of these viruses is also reflected in their interaction with the host animals. Infections are either transient or persistent and can cause a wide spectrum of clinical signs, from no or very mild disease to severe forms, reminiscent of viral haemorrhagic fevers. In this work, we have analysed the clinical signs and the pathology of BVD viral infections in a cattle population where different subgroups of BVDV-1 genotype viruses are endemic. In addition, we have examined potential virulence properties of BVDV-1 subgroups during persistent infection by comparing the viral subgroups present in clinical cases with those detected in persistently infected (PI) animals sampled for epidemiological criteria, irrespective of their health condition. Furthermore, the clinical and postmortem findings were compared with respect to genetic characteristics of the viruses isolated from these animals. Our results indicate that the BVDV positive animals fall roughly into two categories, depending on the primary organ affected and the age, with lung-centred pathology occurring mainly in young animals and mucosal pathology predominantly in older animals. Furthermore, we found a markedly higher proportion of representatives of the BVDV-1e subgroup in stillborn calves and aborted foetuses originating from epidemically unrelated cattle herds, suggesting that BVDV-1e may play a special role in prenatal and perinatal losses.


Veterinary Research | 2013

Persistent infections after natural transmission of bovine viral diarrhoea virus from cattle to goats and among goats

Claudia Bachofen; Hans-Rudolf Vogt; Hanspeter Stalder; Tanja Mathys; Reto Zanoni; Monika Hilbe; Matthias Schweizer; Ernst Peterhans

Bovine viral diarrhoea virus (BVDV) is an economically important pathogen of cattle worldwide. Infection of a pregnant animal may lead to persistent infection of the foetus and birth of a persistently infected (PI) calf that sheds the virus throughout its life. However, BVD viruses are not strictly species specific. BVDV has been isolated from many domesticated and wild ruminants. This is of practical importance as virus reservoirs in non-bovine hosts may hamper BVDV control in cattle. A goat given as a social companion to a BVDV PI calf gave birth to a PI goat kid. In order to test if goat to goat infections were possible, seronegative pregnant goats were exposed to the PI goat. In parallel, seronegative pregnant goats were kept together with the PI calf. Only the goat to goat transmission resulted in the birth of a next generation of BVDV PI kids whereas all goats kept together with the PI calf aborted. To our knowledge, this is the first report which shows that a PI goat cannot only transmit BVD virus to other goats but that such transmission may indeed lead to the birth of a second generation of PI goats. Genetic analyses indicated that establishment in the new host species may be associated with step-wise adaptations in the viral genome. Thus, goats have the potential to be a reservoir for BVDV. However, the PI goats showed growth retardation and anaemia and their survival under natural conditions remains questionable.


Veterinary Microbiology | 2014

Sheep persistently infected with Border disease readily transmit virus to calves seronegative to BVD virus

U. Braun; S. Reichle; C Reichert; Michael Hässig; Hanspeter Stalder; Claudia Bachofen; Ernst Peterhans

Bovine viral diarrhea- and Border disease viruses of sheep belong to the highly diverse genus pestivirus of the Flaviviridae. Ruminant pestiviruses may infect a wide range of domestic and wild cloven-hooved mammals (artiodactyla). Due to its economic importance, programs to eradicate bovine viral diarrhea are a high priority in the cattle industry. By contrast, Border disease is not a target of eradication, although the Border disease virus is known to be capable of also infecting cattle. In this work, we compared single dose experimental inoculation of calves with Border disease virus with co-mingling of calves with sheep persistently infected with this virus. As indicated by seroconversion, infection was achieved only in one out of seven calves with a dose of Border disease virus that was previously shown to be successful in calves inoculated with BVD virus. By contrast, all calves kept together with persistently infected sheep readily became infected with Border disease virus. The ease of viral transmission from sheep to cattle and the antigenic similarity of bovine and ovine pestiviruses may become a problem for demonstrating freedom of BVD by serology in the cattle population.


PLOS Pathogens | 2017

Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication

Eveline Kindler; Cristina Gil-Cruz; Julia Spanier; Yize Li; Jochen Wilhelm; Huib H. Rabouw; Roland Züst; Mihyun Hwang; Philip V'kovski; Hanspeter Stalder; Sabrina Marti; Matthias Habjan; Luisa Cervantes-Barragan; Ruth Elliot; Nadja Karl; Christina Gaughan; Frank J. M. van Kuppeveld; Robert H. Silverman; Markus Keller; Burkhard Ludewig; Cornelia C. Bergmann; John Ziebuhr; Susan R. Weiss; Ulrich Kalinke; Volker Thiel

Coronaviruses are of veterinary and medical importance and include highly pathogenic zoonotic viruses, such as SARS-CoV and MERS-CoV. They are known to efficiently evade early innate immune responses, manifesting in almost negligible expression of type-I interferons (IFN-I). This evasion strategy suggests an evolutionary conserved viral function that has evolved to prevent RNA-based sensing of infection in vertebrate hosts. Here we show that the coronavirus endonuclease (EndoU) activity is key to prevent early induction of double-stranded RNA (dsRNA) host cell responses. Replication of EndoU-deficient coronaviruses is greatly attenuated in vivo and severely restricted in primary cells even during the early phase of the infection. In macrophages we found immediate induction of IFN-I expression and RNase L-mediated breakdown of ribosomal RNA. Accordingly, EndoU-deficient viruses can retain replication only in cells that are deficient in IFN-I expression or sensing, and in cells lacking both RNase L and PKR. Collectively our results demonstrate that the coronavirus EndoU efficiently prevents simultaneous activation of host cell dsRNA sensors, such as Mda5, OAS and PKR. The localization of the EndoU activity at the site of viral RNA synthesis–within the replicase complex—suggests that coronaviruses have evolved a viral RNA decay pathway to evade early innate and intrinsic antiviral host cell responses.


Gene | 1995

Genetic heterogeneity within the coding regions of E2 and NS3 in strains of bovine viral diarrhea virus

Christian Hertig; Hanspeter Stalder; Ernst Peterhans

We have amplified and sequenced parts of the genomes of eleven laboratory strains of bovine viral diarrhea (BVD) virus originating from North America, New Zealand and Europe. The cumulative nucleotide (nt) sequence heterogeneity of the amplified fragments located in the analysed region of the gene encoding the nonstructural protein NS3 (P80) was 24% as compared to 47% for E2 (Gp53). The nt substitutions in the E2 region resulted in replacements in 42% of amino acid (aa) positions, while the deduced aa sequence of all BVD virus strains remained identical in NS3 and differed from the corresponding region of classical swine fever viruses. This makes possible the differentiation of bovine and porcine pestiviruses. It is suggested that genetic heterogeneity results from passage in transiently infected animals.


Genome Announcements | 2014

Complete Genome Sequence of Bovine Pestivirus Strain PG-2, a Second Member of the Tentative Pestivirus Species Giraffe.

Paul Becher; Nicole Fischer; Adam Grundhoff; Hanspeter Stalder; Matthias Schweizer; Alexander Postel

ABSTRACT We report the complete genome sequence of bovine pestivirus strain PG-2. The sequence data from this virus showed that PG-2 is closely related to the giraffe pestivirus strain H138. PG-2 and H138 belong to one pestivirus species that should be considered an approved member of the genus Pestivirus.

Collaboration


Dive into the Hanspeter Stalder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

U. Braun

University of Zurich

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge