Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hany Hassanin is active.

Publication


Featured researches published by Hany Hassanin.


Lab on a Chip | 2012

Fabrication of hybrid nanostructured arrays using a PDMS/PDMS replication process

Hany Hassanin; Ali Mohammadkhani; Kyle Jiang

In the study, a novel and low cost nanofabrication process is proposed for producing hybrid polydimethylsiloxane (PDMS) nanostructured arrays. The proposed process involves monolayer self-assembly of polystyrene (PS) spheres, PDMS nanoreplication, thin film coating, and PDMS to PDMS (PDMS/PDMS) replication. A self-assembled monolayer of PS spheres is used as the first template. Second, a PDMS template is achieved by replica moulding. Third, the PDMS template is coated with a platinum or gold layer. Finally, a PDMS nanostructured array is developed by casting PDMS slurry on top of the coated PDMS. The cured PDMS is peeled off and used as a replica surface. In this study, the influences of the coating on the PDMS topography, contact angle of the PDMS slurry and the peeling off ability are discussed in detail. From experimental evaluation, a thickness of at least 20 nm gold layer or 40 nm platinum layer on the surface of the PDMS template improves the contact angle and eases peeling off. The coated PDMS surface is successfully used as a template to achieve the replica with a uniform array via PDMS/PDMS replication process. Both the PDMS template and the replica are free of defects and also undistorted after demoulding with a highly ordered hexagonal arrangement. In addition, the geometry of the nanostructured PDMS can be controlled by changing the thickness of the deposited layer. The simplicity and the controllability of the process show great promise as a robust nanoreplication method for functional applications.


Materials Science and Engineering: C | 2016

Adding functionality with additive manufacturing: Fabrication of titanium-based antibiotic eluting implants.

Sophie C. Cox; Parastoo Jamshidi; Neil M. Eisenstein; Mark A. Webber; Hany Hassanin; Moataz M. Attallah; Duncan Et Shepherd; Owen Addison; Liam M. Grover

Additive manufacturing technologies have been utilised in healthcare to create patient-specific implants. This study demonstrates the potential to add new implant functionality by further exploiting the design flexibility of these technologies. Selective laser melting was used to manufacture titanium-based (Ti-6Al-4V) implants containing a reservoir. Pore channels, connecting the implant surface to the reservoir, were incorporated to facilitate antibiotic delivery. An injectable brushite, calcium phosphate cement, was formulated as a carrier vehicle for gentamicin. Incorporation of the antibiotic significantly (p=0.01) improved the compressive strength (5.8±0.7MPa) of the cement compared to non-antibiotic samples. The controlled release of gentamicin sulphate from the calcium phosphate cement injected into the implant reservoir was demonstrated in short term elution studies using ultraviolet-visible spectroscopy. Orientation of the implant pore channels were shown, using micro-computed tomography, to impact design reproducibility and the back-pressure generated during cement injection which ultimately altered porosity. The amount of antibiotic released from all implant designs over a 6hour period (<28% of the total amount) were found to exceed the minimum inhibitory concentrations of Staphylococcus aureus (16μg/mL) and Staphylococcus epidermidis (1μg/mL); two bacterial species commonly associated with periprosthetic infections. Antibacterial efficacy was confirmed against both bacterial cultures using an agar diffusion assay. Interestingly, pore channel orientation was shown to influence the directionality of inhibition zones. Promisingly, this work demonstrates the potential to additively manufacture a titanium-based antibiotic eluting implant, which is an attractive alternative to current treatment strategies of periprosthetic infections.


ACS Applied Materials & Interfaces | 2016

Graphene-Alumina Nanocomposites with Improved Mechanical Properties for Biomedical Applications.

Jian Liu; Yang Yang; Hany Hassanin; Neeraj Jumbu; Sunan Deng; Qian Zuo; Kyle Jiang

This paper presents a study on graphene platelet (GPL)-reinforced alumina (Al2O3) ceramic composites and the relationships between the loading of GPL and both mechanical properties and in vitro biocompatibility. Al2O3 powders with different GPL contents were prepared and sintered using a gas protected pressure-less furnace. The examination of the results shows the density of the composites varying from 99.2% to 95.6% with the loading of GPL from 0.75 to 1.48 vol %. Raman studies show that moderate agglomerations of GPLs occur during the ball milling process and graphitic defects were produced during the high temperature processing. Mechanical properties of the Al2O3 matrix are significantly improved by adding GPLs. A maximum increase of approximately 60% in flexural strength and 70% in fracture toughness are achieved by introducing 0.75 vol % GPLs. In the biocompatibility tests, it was found that cells directly seeding on top of GPL/Al2O3 samples showed better initial attachment (3 h after seeding) and viability (3 days after incubation) than the monolithic Al2O3, indicating that the GPL/Al2O3 composites have comparable or more favorable biocompatibility. The excellent mechanical and biomedical properties of the GPL/Al2O3 composites may enable them to be applied to a wide range of engineering and biomedical applications.


Journal of Micromechanics and Microengineering | 2014

Net shape manufacturing of ceramic micro parts with tailored graded layers

Hany Hassanin; Kyle Jiang

Presented in this paper is a novel net shape manufacturing technology for making three-dimensional micro parts with functionally graded layers. Alumina/zirconia micro parts with either core?shell or top?bottom functionally graded material (FGM) profiles have been successfully fabricated by altering both the surface characteristics of polydimethylsiloxane (PDMS) micro moulds and ceramic suspensions composition. PDMS surface modifications were performed to achieve moulds with hydrophilic surfaces, which were used to form core/shell FGM green layers. On the other hand, moulds with hydrophobic surfaces were used to form top?bottom green layers. Cracks have been found between consecutive layers in both the green and sintered micro parts. It was found that, at dispersant concentration of about 9.0?mg g?1,?the differences in the drying shrinkage between layers is less than 0.5%. In addition, layers of composition of 100% Al2O3?0% YSZ, 20% Al2O3?80% YSZ and 40% Al2O3?60% YSZ were found to produce less shrinkage difference during sintering. After optimization of both green and sintering layers, crack free core/shell and top?bottom alumina/zirconia FGM micro parts were successfully obtained. The proposed process enables the production of micro patterns tailored with functionally graded microstructures to locally enhance properties and performance.


Rapid Prototyping Journal | 2017

Net-Shape Manufacturing using Hybrid Selective Laser Melting/Hot Isostatic Pressing

Hany Hassanin; Khamis Essa; Chunlei Qiu; Ali M. Abdelhafeez; Nicholas J.E. Adkins; Moataz M. Attallah

Purpose The purpose of this study is to develop a manufacturing technology using hybrid selective laser melting/hot isostatic pressing (SLM/HIP) process to produce full density net-shape components more rapidly and at lower cost than processing by SLM alone. Design/methodology/approach Ti-6Al-4V powder was encapsulated in situ by the production of as-SLMed shell prior to the HIP process. After HIPping, the SLM shell is an integral part of the final component. Finite element (FE) modelling based on pure plasticity theory of porous metal coupled with an iterative procedure has been adopted to simulate HIPping of the encapsulated Ti-6Al-4V powder and SLMed shell. Two demonstrator parts have been modelled, designed, produced and experimentally validated. Geometrical analysis and microstructural characterisation have been carried out to demonstrate the efficiency of the process. Findings The FE model is in agreement with the measured data obtained and confirms that the design of the shell affects the resulting deformed parts. In addition, the scanning electron microscope (SEM) and Electron backscatter diffraction EBSD (EBSD) of the interior and exterior parts reveal a considerably different grain structure and crystallographic orientation with a good bonding between the SLMed shell and HIPped powder. Originality/value An approach to improve SLM productivity by combining it with HIP is developed to further innovate the advanced manufacturing field. The possibility of the hybrid SLS/HIP supported by FEA simulation as a net shape manufacturing process for fabrication of high performance parts has been demonstrated.


International Journal of Cast Metals Research | 2016

Effect of casting practice on the reliability of Al cast alloys

Mahmoud Ahmed El-Sayed; Hany Hassanin; Khamis Essa

Abstract: The properties of aluminium castings are strongly affected by their inclusion content, particularly entrained surface alumina films. These form due to the surface turbulence associated with mould filling, which causes the oxidised surface of a liquid metal to fold-over onto itself and be submerged into the bulk liquid with a thin layer of air entrapped within it. This is known as entrainment action. These flaws have been reported to increase the variability of the fracture strengths of Al alloy castings. This means that shape castings in light alloys can have inconsistent properties, which makes designing structures employing shape castings more difficult. Entrained surface layers can cause premature failure, but also have been associated with other defects, such as hydrogen porosity, shrinkage porosity, intermetallic compounds and hot tearing. Recent research has suggested that the air inside the defect would react with the surrounding melt leading to its consumption, which may enhance the mechanical properties of the casting. In this work, liquid aluminium was poured into three identical ceramic moulds which were immediately placed in a furnace to preserve the molten metal at 800 °C, for different periods of time prior to freezing. The Weibull moduli of the plate castings were determined under tensile conditions, and their fracture surfaces examined using SEM. Investigation of the fracture surfaces of the specimens detected many alumina layers at different locations. Many of which were found inside pores, reflecting the role of entrained defects in the formation of porosity. The results also suggested that opposite phenomena may take place during the holding treatment. The consumption of air inside the entrained defects due to reaction with the surrounding molten metal may lead to improvements in mechanical properties, but this may be accompanied by hydrogen passing into the defects, which has a deleterious effect on properties.


Pharmaceutical Development and Technology | 2018

Understanding the compaction behaviour of low-substituted HPC: macro, micro, and nano-metric evaluations

Amr ElShaer; Ali Al-Khattawi; Afzal-Ur-Rahman Mohammed; Monika Warzecha; Dimitrios A. Lamprou; Hany Hassanin

Abstract The fast development in materials science has resulted in the emergence of new pharmaceutical materials with superior physical and mechanical properties. Low-substituted hydroxypropyl cellulose is an ether derivative of cellulose and is praised for its multi-functionality as a binder, disintegrant, film coating agent and as a suitable material for medical dressings. Nevertheless, very little is known about the compaction behaviour of this polymer. The aim of the current study was to evaluate the compaction and disintegration behaviour of four grades of L-HPC namely; LH32, LH21, LH11, and LHB1. The macrometric properties of the four powders were studied and the compaction behaviour was evaluated using the out-of-die method. LH11 and LH22 showed poor flow properties as the powders were dominated by fibrous particles with high aspect ratios, which reduced the powder flow. LH32 showed a weak compressibility profile and demonstrated a large elastic region, making it harder for this polymer to deform plastically. These findings are supported by AFM which revealed the high roughness of LH32 powder (100.09 ± 18.84 nm), resulting in small area of contact, but promoting mechanical interlocking. On the contrary, LH21 and LH11 powders had smooth surfaces which enabled larger contact area and higher adhesion forces of 21.01 ± 11.35 nN and 9.50 ± 5.78 nN, respectively. This promoted bond formation during compression as LH21 and LH11 powders had low strength yield.


international conference on nanotechnology | 2012

Ceramic nanocomposite by electrodeposition of nickel into porous alumina matrix

Hany Hassanin; Ali Mohammadkhani; Kyle Jiang

This paper reports a process of electrodeposition of Ni into porous alumina matrix. In the proposed process, porous alumina membrane with cross linked networks was fabricated using colloidal powder processing and pressureless sintering. The dispersion conditions of aqueous alumina nanopowder suspensions were obtained by optimizing both the pH and dispersant concentration. The optimal pH of the suspension is found to be 7 and the amount of dispersant is 12 mg/g of alumina powder. Alumina green parts were sintered at 1200°C to obtain porous alumina matrix. Ni was deposited into the porous alumina compacts. The experimental results show that Ni nanoparticles are uniformly dispersed in the porous membrane during the electrodeposition process.


Pharmaceutics | 2018

Oral Modified Release Multiple-Unit Particulate Systems: Compressed Pellets, Microparticles and Nanoparticles

Nihad Al-Hashimi; Nazish Begg; Raid G. Alany; Hany Hassanin; Amr ElShaer

Oral modified-release multiparticulate dosage forms, which are also referred to as oral multiple-unit particulate systems, are becoming increasingly popular for oral drug delivery applications. The compaction of polymer-coated multiparticulates into tablets to produce a sustained-release dosage form is preferred over hard gelatin capsules. Moreover, multiparticulate tablets are a promising solution to chronic conditions, patients’ adherence, and swallowing difficulties if incorporated into orodispersible matrices. Nonetheless, the compaction of multiparticulates often damages the functional polymer coat, which results in a rapid release of the drug substance and the subsequent loss of sustained-release properties. This review brings to the forefront key formulation variables that are likely to influence the compaction of coated multiparticulates into sustained-release tablets. It focusses on the tabletting of coated drug-loaded pellets, microparticles, and nanoparticles with a designated section on each. Furthermore, it explores the various approaches that are used to evaluate the compaction behaviour of particulate systems.


Archive | 2018

Surface finish improvement of additive manufactured metal parts

Hany Hassanin; Amr ElShaer; R. Benhadj-Djilali; Francesco Modica; Irene Fassi

Unlike materials subtractive technologies, additive manufacturing (AM) works on producing near-net-shape components according to a specific design at which the synthesis is achieved layer by layer. Additive manufacturing allows design freedom, making design-driven manufacturing a reality. However, its poor surface quality is considered as one of the key challenges that are worth to overcome. The main objective of this chapter is to report a comprehensive overview of the techniques used to improve the surface finish and their advancements of products made by metal additive manufacturing (AM) technologies and to highlight experimental processes and data. Powder bed fusion (PBF) and direct laser deposition (DLD) are the main processes covered in this review. The chapter starts with the literature review and introduction to the main metal AM processes and their surface roughness limitations, the effect of their parameters and the effect of the laser re-melting on the surface quality. Next, it is followed by a number of surface finishing techniques such as laser polishing, chemical and electropolishing. Experimental results of post-surface finishing of AM parts by microelectrical discharge machining are also presented.

Collaboration


Dive into the Hany Hassanin's collaboration.

Top Co-Authors

Avatar

Khamis Essa

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar

Kyle Jiang

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chunlei Qiu

University of Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge