Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hanzhong Jia is active.

Publication


Featured researches published by Hanzhong Jia.


Environmental Science & Technology | 2010

Synthesis of Highly Reactive Subnano-sized Zero-valent Iron using Smectite Clay Templates

Cheng Gu; Hanzhong Jia; Hui Li; Brian J. Teppen; Stephen A. Boyd

A novel method was developed for synthesizing subnano-sized zero-valent iron (ZVI) using smectite clay layers as templates. Exchangeable Fe(III) cations compensating the structural negative charges of smectites were reduced with NaBH(4), resulting in the formation of ZVI. The unique structure of smectite clay, in which isolated exchangeable Fe(III) cations reside near the sites of structural negative charges, inhibited the agglomeration of ZVI resulting in the formation of subnanoscale ZVI particles in the smectite interlayer regions. X-ray diffraction revealed an interlayer spacing of approximately 5 A. The non-structural iron content of this clay yields a calculated ratio of two atoms of ZVI per three cation exchange sites, in full agreement with the X-ray diffraction (XRD) results since the diameter of elemental Fe is 2.5 A. The clay-templated ZVI showed superior reactivity and efficiency compared to other previously reported forms of ZVI as indicated by the reduction of nitrobenzene; structural Fe within the aluminosilicate layers was nonreactive. At a 1:3 molar ratio of nitrobenzene/non-structural Fe, a reaction efficiency of 83% was achieved, and over 80% of the nitrobenzene was reduced within one minute. These results confirm that non-structural Fe from Fe(III)-smectite was reduced predominantly to ZVI which was responsible for the reduction of nitrobenzene to aniline. This new form of subnanoscale ZVI may find utility in the development of remediation technologies for persistent environmental contaminants, for example, as components of constructed reactive domains such as reactive caps for contaminated sediments.


Environmental Science & Technology | 2016

Formation and Stabilization of Environmentally Persistent Free Radicals Induced by the Interaction of Anthracene with Fe(III)-Modified Clays

Hanzhong Jia; Gulimire Nulaji; Hongwei Gao; Fu Wang; Yunqing Zhu; Chuanyi Wang

Environmentally persistent free radicals (EPFRs) are occasionally detected in Superfund sites but the formation of EPFRs induced by polycyclic aromatic hydrocarbons (PAHs) is not well understood. In the present work, the formation of EPFRs on anthracene-contaminated clay minerals was quantitatively monitored via electron paramagnetic resonance (EPR) spectroscopy, and surface/interface-related environmental influential factors were systematically explored. The obtained results suggest that EPFRs are more readily formed on anthracene-contaminated Fe(III)-montmorillonite than in other tested systems. Depending on the reaction condition, more than one type of organic radicals including anthracene-based radical cations with g-factors of 2.0028-2.0030 and oxygenic carbon-centered radicals featured by g-factors of 2.0032-2.0038 were identified. The formed EPFRs are stabilized by their interaction with interlayer surfaces, and such surface-bound EPFRs exhibit slow decay with 1/e-lifetime of 38.46 days. Transformation pathway and possible mechanism are proposed on the basis of experimental results and quantum mechanical simulations. Overall, the formation of EPFRs involves single-electron-transfer from anthracene to Fe(III) initially, followed by H2O addition on formed aromatic radical cation. Because of their potential exposure in soil and atmosphere, such clay surface-associated EPFRs might induce more serious toxicity than PAHs and exerts significant impacts on human health.


Catalysis Science & Technology | 2017

Defective graphitic carbon nitride synthesized by controllable co-polymerization with enhanced visible light photocatalytic hydrogen evolution

Mei Zhang; Yanyan Duan; Hanzhong Jia; Fu Wang; Lan Wang; Zhi Su; Chuanyi Wang

Defects have a vital effect on the band structures and properties of semiconductor photocatalysts. Herein, we developed a one-step strategy to introduce defects in the framework of g-C3N4 by controllable copolymerization of melamine with a series of partially reactive end capped monomers. The capping molecules have great impacts on the properties of modified g-C3N4. The obtained defective g-C3N4 exhibits an increased surface area, improved charge carrier separation efficiency, and a narrowed band gap with a negative shift of the conduction band. Particularly, defect-rich CN-DPT shows 10 times improvement of visible light activity for hydrogen production compared with pristine g-C3N4.


Journal of Hazardous Materials | 2013

Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: role of soil organic matter.

Hanzhong Jia; Li Li; Xiaoyun Fan; Mingdeng Liu; Wenye Deng; Chuanyi Wang

In the present study, phenanthrene is employed as a model to explore the roles played by three soil organic matter (SOM) fractions, i.e., dissolved organic matter (DOM), humic acid (HA), and fulvic acid (FA), in its photodegradation with assistance of Fe(III)-smectite under visible-light. Slight decrease in phenanthrene photodegradation rate was observed in the presence of DOM, which is explained in terms of oxidative-radical competition between DOM and target phenanthrene molecules due to the high electron-donor capacity of phenolic moieties in DOM. On the other hand, a critic content is observed with FA (0.70mg/g) and HA (0.65mg/g). Before reaching the critic content, the removal of phenanthrene is accelerated; while after that, the photodegradation rate is suppressed. The acceleration of phenanthrene degradation can be attributed to the photosensitization of FA and HA. Due to the strong interaction between phenanthrene and the phenyl rings, however, the retention of phenanthrene on SOM-Fe(III)-smectite in the presence of high content of HA or FA is enhanced, thus slowing down its photodegradation. Those observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and open a window for using clay-humic substances complexes for remediation of contaminated soil.


Journal of Hazardous Materials | 2015

Exchangeable cations-mediated photodegradation of polycyclic aromatic hydrocarbons (PAHs) on smectite surface under visible light.

Hanzhong Jia; Li Li; Hongxia Chen; Yue Zhao; Xiyou Li; Chuanyi Wang

Clay minerals saturated with different exchangeable cations are expected to play various roles in photodegradation of polycyclic aromatic hydrocarbons (PAHs) via direct and/or indirect pathways on clay surfaces. In the present study, anthracene and phenanthrene were selected as molecule probes to investigate the roles of exchangeable cations on their photodegradation under visible light irradiation. For five types of cation-modified smectite clays, the photodegradation rate of anthracene and phenanthrene follows the order: Fe(3+)>Al(3+)>Cu(2+)>>Ca(2+)>K(+)>Na(+), which is consistent with the binding energy of cation-π interactions between PAHs and exchangeable cations. The result suggests that PAHs photolysis rate depends on cation-π interactions on clay surfaces. Meanwhile, the deposition of anthracene at the Na(+)-smectite and K(+)-smectite surface favors solar light absorption, resulting in enhanced direct photodecomposition of PAHs. On the other hand, smectite clays saturated with Fe(3+), Al(3+), and Cu(2+) are highly photoreactive and can act as potential catalysts giving rise to oxidative radicals such as O2(-) , which initiate the transformation of PAHs. The present work provides valuable insights into understanding the transformation and fate of PAHs in the natural soil environment and sheds light on the development of technologies for contaminated land remediation.


Chemosphere | 2015

Effect of low-molecular-weight organic acids on photo-degradation of phenanthrene catalyzed by Fe(III)-smectite under visible light.

Hanzhong Jia; Hongxia Chen; Gulimire Nulaji; Xiyou Li; Chuanyi Wang

The photolysis of polycyclic aromatic hydrocarbons (PAHs) is potentially an important process for its transformation and fate on contaminated soil surfaces. In this study, phenanthrene is employed as a model to explore PAH photodegradation with the assistance of Fe(III)-smectite under visible-light while focusing on roles played by five low-molecular-weight organic acids (LMWOAs), i.e., malic acid, oxalic acid, citric acid, ethylenediaminetetraacetic acid (EDTA), and nitrilotriacetic acid. Our results show that oxalic acid is most effective in promoting the photodegradation of phenanthrene, while only a slight increase in the rate of phenanthrene photodegradation is observed in the presence of malic acid. Electron paramagnetic resonance experiments confirm the formation of CO2(-) radicals in the presence of malic and oxalic acid, which provides strong evidence for generating OH and subsequent photoreaction pathways. The presence of EDTA or nitrilotriacetic acid significantly inhibits both Fe(II) formation and phenanthrene photodegradation because these organic anions tend to chelate with Fe(III), leading to decreases in the electron-accepting potential of Fe(III)-smectite and a weakened interaction between phenanthrene and Fe(III)-smectite. These observations provide valuable insights into the transformation and fate of PAHs in the natural soil environment and demonstrate the potential for using some LMWOAs as additives for the remediation of contaminated soil.


Environmental Science & Technology | 2017

Environmentally Persistent Free Radicals in Soils of Past Coking Sites: Distribution and Stabilization

Hanzhong Jia; Song Zhao; Gulimire Nulaji; Kelin Tao; Fu Wang; Virender K. Sharma; Chuanyi Wang

This study presents the existence of environmentally persistent free radicals (EPFRs) in soils of past coking sites, mainly contaminated by polycyclic aromatic hydrocarbons (PAHs). Measurements of EPFRs were conducted by electron paramagnetic resonance (EPR) technique with numerous soil samples, which were collected from different distances (0-1000 m) and different depths (0-30 cm) of three contaminant sources. EPR signals with ∼3 × 1017 radicals/g of the soil samples were obtained, which are very similar to that generated in PAHs contaminated clays, that is, g = 2.0028-2.0036. Concentrations of PAHs and soil components were determined to understand their role in producing EPFRs. PAHs, clay, and iron predominately contributed to generating EPRFs. Meanwhile, organic matter negatively influenced the production of EPRFs. The effects of environmental factors (moisture and oxic/anoxic) were also studied to probe the persistency of EPFRs under various simulated conditions. The EPFRs are stable under relatively dry and oxic conditions. Under anoxic conditions without O2 and H2O, the spin densities decrease initially, followed by gradual increase before attaining constant values in two months period time. The present work implies that continuous formation of EPFRs induced by PAHs is largely responsible for the presence of relatively stable radicals in soils of coking sites.


Journal of Hazardous Materials | 2015

Dechlorination of chlorinated phenols by subnanoscale Pd0/Fe0 intercalated in smectite: pathway, reactivity, and selectivity

Hanzhong Jia; Chuanyi Wang

Smectite clay was employed as templated matrix to prepare subnanoscale Pd(0)/Fe(0) particles, and their components as well as intercalated architectures were well characterized by X-ray energy dispersive spectroscopy (X-EDS) and X-ray diffraction (XRD). Furthermore, as-prepared Pd(0)/Fe(0) subnanoscale nanoparticles were evaluated for their dechlorination effect using chlorinated phenols as model molecules. As a result, pentachlorophenol (PCP) is selectively transformed to phenol in a stepwise dechlorination pathway within 6h, and the dechlorination rate constants show linearly relationship with contents of Pd as its loadings <0.065%. Comparing with PCP, other chlorinated phenols display similar degradation pattern but within much shorter time frame. The dechlorination rate of chlorinated phenols increases with decreasing in number of -Cl attached to aromatic ring, which can be predicted by the total charge of the aromatic ring, exhibiting an inversely linear relationship with the dechlorination rates. While the selectivity of dechlorination depends on the charges associated with the individual aromatic carbon. Chloro-functional groups at the ortho-position are easier to be dechlorinated than that at meta- and para- positions yielding primarily 3,4,5-TCP as intermediate from PCP, further to phenol. The effective dechlorination warrants their potential utilizations in development of in-situ remediation technologies for organic pollutants in contaminated water.


Environmental Science and Pollution Research | 2015

Transformation of anthracene on various cation-modified clay minerals.

Li Li; Hanzhong Jia; Xiyou Li; Chuanyi Wang

In this study, anthracene was employed as a probe to explore the potential catalytic effect of clay minerals in soil environment. Clay minerals saturated with various exchangeable cations were tested. The rate of anthracene transformation follows the order: Fe–smectite >> Cu–smectite > Al–smectite ≈ Ca–smectite ≈ Mg–smectite ≈ Na–smectite. This suggests that transition-metal ions such as Fe(III) play an important role in anthracene transformation. Among Fe(III)-saturated clays, Fe(III)–smectite exhibits the highest catalytic activity followed by Fe(III)–illite, Fe(III)–pyrophyllite, and Fe(III)–kaolinite, which is in agreement with the interlayer Fe(III) content. Moreover, effects by two common environmental factors, pH and relative humidity (RH), were evaluated. With an increase in pH or RH, the rate of anthracene transformation decreases rapidly at first and then is leveled off. GC-MS analysis identifies that the final product of anthracene transformation is 9,10-anthraquinone, a more bioavailable molecule compared to anthracene. The transformation process mainly involves cation-π bonding, electron transfer leading to cation radical, and further oxidation by chemisorbed O2. The present work provides valuable insights into the abiotic transformation and the fate of PAHs in the soil environment and the development of contaminated land remediation technologies.


Environmental Science & Technology | 2018

Transformation of Polycyclic Aromatic Hydrocarbons and Formation of Environmentally Persistent Free Radicals on Modified Montmorillonite: The Role of Surface Metal Ions and Polycyclic Aromatic Hydrocarbon Molecular Properties

Hanzhong Jia; Song Zhao; Yafang Shi; Lingyan Zhu; Chuanyi Wang; Virender K. Sharma

This paper presents the transformation of PAHs (phenanthrene, anthracene, benzo[a]anthracene, pyrene, and benzo[a]pyrene) on montmorillonite clays that are modified by transition-metal ions [Fe(III), Cu(II), Ni(II), Co(II), or Zn(II)] at room temperature (∼23 °C). The decay of these PAHs follows first-order kinetics, and the dependence of the observed rate constants ( kobs, day-1) on the presence of metal ions follows the order Fe(III) > Cu(II) > Ni(II) > Co(II) > Zn(II). The values of kobs show reasonable linear relationships with the oxidation potentials of the PAHs and the redox potentials of the metal ions. Notably, transformation of these PAHs results in the formation of environmentally persistent free radicals (EPFRs), which are of major concern due to their adverse effects on human health. The potential energy surface (PES) calculations using density functional theory were performed to understand the trends in kobs and the plausible mechanisms for radical formation from the PAHs on modified clays. The yields and stability of these EPFRs from anthracene and benzo[a]pyrene on clay surfaces varies with both the parent PAH and the metal ion. The results demonstrated the potential role of metals in the formation and fate of PAH-induced EPFR at co-contaminated sites.

Collaboration


Dive into the Hanzhong Jia's collaboration.

Top Co-Authors

Avatar

Chuanyi Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiaoyun Fan

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Fu Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Shouzhu Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Li Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Gulimire Nulaji

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Mingdeng Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Song Zhao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xiyou Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Zhen Wang

Chinese Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge