Hao Jie Zhu
University of Michigan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hao Jie Zhu.
American Journal of Human Genetics | 2008
Hao Jie Zhu; Kennerly S. Patrick; Hong Jie Yuan; Jun Sheng Wang; Jennifer L. Donovan; C. Lindsay DeVane; Robert Malcolm; Julie A. Johnson; Geri L. Youngblood; Douglas H. Sweet; Taimour Y. Langaee; John S. Markowitz
The human carboxylesterase 1 (CES1) gene encodes for the enzyme carboxylesterase 1, a serine esterase governing both metabolic deactivation and activation of numerous therapeutic agents. During the course of a study of the pharmacokinetics of the methyl ester racemic psychostimulant methylphenidate, profoundly elevated methylphenidate plasma concentrations, unprecedented distortions in isomer disposition, and increases in hemodynamic measures were observed in a subject of European descent. These observations led to a focused study of the subjects CES1 gene. DNA sequencing detected two coding region single-nucleotide mutations located in exons 4 and 6. The mutation in exon 4 is located in codon 143 and leads to a nonconservative substitution, p.Gly143Glu. A deletion in exon 6 at codon 260 results in a frameshift mutation, p.Asp260fs, altering residues 260-299 before truncating at a premature stop codon. The minor allele frequency of p.Gly143Glu was determined to be 3.7%, 4.3%, 2.0%, and 0% in white, black, Hispanic, and Asian populations, respectively. Of 925 individual DNA samples examined, none carried the p.Asp260fs, indicating it is an extremely rare mutation. In vitro functional studies demonstrated the catalytic functions of both p.Gly143Glu and p.Asp260fs are substantially impaired, resulting in a complete loss of hydrolytic activity toward methylphenidate. When a more sensitive esterase substrate, p-nitrophenyl acetate was utilized, only 21.4% and 0.6% catalytic efficiency (V(max)/K(m)) were determined in p.Gly143Glu and p.Asp260fs, respectively, compared to the wild-type enzyme. These findings indicate that specific CES1 gene variants can lead to clinically significant alterations in pharmacokinetics and drug response of carboxylesterase 1 substrates.
Journal of Pharmacology and Experimental Therapeutics | 2013
Hao Jie Zhu; Xinwen Wang; Brian E. Gawronski; Bryan J. Brinda; Dominick J. Angiolillo; John S. Markowitz
Clopidogrel pharmacotherapy is associated with substantial interindividual variability in clinical response, which can translate into an increased risk of adverse outcomes. Clopidogrel, a recognized substrate of hepatic carboxylesterase 1 (CES1), undergoes extensive hydrolytic metabolism in the liver. Significant interindividual variability in the expression and activity of CES1 exists, which is attributed to both genetic and environmental factors. We determined whether CES1 inhibition and CES1 genetic polymorphisms would significantly influence the biotransformation of clopidogrel and alter the formation of the active metabolite. Coincubation of clopidogrel with the CES1 inhibitor bis(4-nitrophenyl) phosphate in human liver s9 fractions significantly increased the concentrations of clopidogrel, 2-oxo-clopidogrel, and clopidogrel active metabolite, while the concentrations of all formed carboxylate metabolites were significantly decreased. As anticipated, clopidogrel and 2-oxo-clopidogrel were efficiently hydrolyzed by the cell s9 fractions prepared from wild-type CES1 transfected cells. The enzymatic activity of the CES1 variants G143E and D260fs were completely impaired in terms of catalyzing the hydrolysis of clopidogrel and 2-oxo-clopidogrel. However, the natural variants G18V, S82L, and A269S failed to produce any significant effect on CES1-mediated hydrolysis of clopidogrel or 2-oxo-clopidogrel. In summary, deficient CES1 catalytic activity resulting from CES1 inhibition or CES1 genetic variation may be associated with higher plasma concentrations of clopidogrel-active metabolite, and hence may enhance antiplatelet activity. Additionally, CES1 genetic variants have the potential to serve as a biomarker to predict clopidogrel response and individualize clopidogrel dosing regimens in clinical practice.
Journal of Endocrinology | 2008
Shou Si Lu; Yun Li Yu; Hao Jie Zhu; Xiaodong Liu; Li Liu; Yao-Wu Liu; Ping Wang; Lin Xie; Guang Ji Wang
Berberine (BBR), a hypoglycemic agent, has shown beneficial metabolic effects for anti-diabetes, but its precise mechanism was unclear. Glucagon-like peptide-1 (GLP-1) is considered to be an important incretin that can decrease hyperglycemia in the gastrointestinal tract after meals. The aim of this study was to investigate whether BBR exerts its anti-diabetic effects via modulating GCG secretion. Diabetes-like rats induced by streptozotocin received BBR (120 mg/kg per day, i.g) for 5 weeks. Two hours following the last dose, the rats were anaesthetized and received 2.5 g/kg glucose by gavage. At 15-minute and 30-minute after glucose load, blood samples, pancreas, and intestines were obtained to measure insulin and GCG using ELISA kit. The number of L cells in the ileum and beta-cells in the pancreas were identified using immunohistology. The expression of proglucagon mRNA in the ileum was measured by RT-PCR. The results indicated that BBR treatment significantly increased GCG levels in plasma and intestine (P<0.05) accompanied with the increase of proglucagon mRNA expression and the number of L-cell compared with the controls (P<0.05). Furthermore, BBR increased insulin levels in plasma and pancreas as well as beta-cell number in pancreas. The data support the hypothesis that the anti-diabetic effects of BBR may partly result from enhancing GCG secretion.
Neuropsychopharmacology | 2007
Hao Jie Zhu; Jun Sheng Wang; John S. Markowitz; Jennifer L. Donovan; Bryan B. Gibson; C. Lindsay DeVane
Risperidone (RSP) and its major active metabolite, 9-hydroxy-risperidone (paliperidone, PALI), are substrates of the drug transporter P-glycoprotein (P-gp). The goal of this study was to examine the in vitro effects of RSP and PALI on P-gp-mediated transport. The intracellular accumulation of rhodamine123 (Rh123) and doxorubicin (DOX) were examined in LLC-PK1/MDR1 cells to evaluate P-gp inhibition by RSP and PALI. Both compounds significantly increased the intracellular accumulation of Rh123 and DOX in a concentration-dependent manner. The IC50 values of RSP for inhibiting P-gp-mediated transport of Rh123 and DOX were 63.26 and 15.78 μM, respectively, whereas the IC50 values of PALI were >100 μM, indicating that PALI is a less potent P-gp inhibitor. Caco-2 and primary cultured rat brain microvessel endothelial cells (RBMECs) were utilized to investigate the possible influence of RSP on intestinal absorption and blood–brain barrier (BBB) transport of coadministered drugs that are P-gp substrates. RSP, 1–50 μM, significantly enhanced the intracellular accumulation of Rh123 in Caco-2 cells by inhibiting P-gp activity with an IC50 value of 5.87 μM. Following exposure to 10 μM RSP, the apparent permeability coefficient of Rh123 across Caco-2 and RBMECs monolayers was increased to 2.02 and 2.63-fold in the apical to basolateral direction, but decreased to 0.37 and 0.21-fold in the basolateral to apical direction, respectively. These data suggest that RSP and PALI, to a lesser extent, have a potential to influence the pharmacokinetics and hence the pharmacodynamics of coadministered drugs via inhibition of P-gp-mediated transport. However, no human data exist that address this issue. In particular, RSP may interact with its own active metabolite PALI by promoting its brain concentration through inhibiting P-gp-mediated efflux of PALI across endothelial cells of the BBB.
Journal of Pharmacology and Experimental Therapeutics | 2006
Hao Jie Zhu; Jun Sheng Wang; John S. Markowitz; Jennifer L. Donovan; Bryan B. Gibson; Holly A. Gefroh; C. Lindsay DeVane
The ATP-dependent drug efflux transporter P-glycoprotein (P-gp) plays a significant role in the absorption and disposition of many compounds. The purpose of this study was to investigate the possible interaction of P-gp with each of four major mari-juana constituents: Δ9-tetrahydrocannabinol (THC), 11-nor-Δ9-tetrahydrocannabinol-carboxylic acid (THC-COOH), cannabinol (CBN), and cannabidiol (CBD). The results of a P-gp ATPase activity screen showed that THC-COOH, CBN, THC, and CBD all stimulated P-gp ATPase activity with a Michaelis-Menten parameter (Vmax/Km) value of 1.3, 0.7, 0.1, and 0.05, respectively. Furthermore, CBD showed a concentration-dependent inhibitory effect on verapamil-stimulated ATPase activity with an IC50 value of 39.6 μM, whereas all other tested cannabinoids did not display appreciable inhibitory effects. Thus, the inhibitory effects of CBD on P-gp transport were further studied. At concentrations ranging from 5 to 100 μM, CBD robustly enhanced the intracellular accumulation of known P-gp substrates rhodamine 123 and doxorubicin in a concentration-dependent manner in Caco-2 and LLC-PK1/MDR1 cells. An IC50 value of 8.44 μM was obtained for inhibition of P-gp function in LLC-PK1/MDR1 cells as determined by flow cytometry using rhodamine 123 as a fluorescence probe. Following exposure to 30 μM CBD, the apparent permeability coefficient of rhodamine 123 across Caco-2 and rat brain microvessel endothelial cell monolayers was increased to 2.2- and 2.6-fold in the apical-to-basolateral direction but decreased to 0.69- and 0.47-fold in the basolateral-to-apical direction, respectively. These findings indicate that CBD significantly inhibits P-gp-mediated drug transport, suggesting CBD could potentially influence the absorption and disposition of other coadministered compounds that are P-gp substrates.
Drug Metabolism and Disposition | 2009
Hao Jie Zhu; David I. Appel; Yan Jiang; John S. Markowitz
Carboxylesterase (CES) 1 and CES2 are two major hepatic hydrolases responsible for the metabolism of numerous endogenous and exogenous compounds. In this study, age- and sex-dependent expression and activity of CES1 and CES2 were investigated using both animal models and individual human liver s9 samples. The expression and activity of mouse CES1 (mCES1) and mCES2 in the liver were markedly lower in newborns relative to adults and increased gradually with age, approximating levels of adult animals by age 2 to 4 weeks. Likewise, the average human CES1 (hCES1) expression in the subjects <1 year of age was significantly lower than that of pooled samples. In particular, hCES1 expression in the 13-day and 1-month-old subjects was just 20.3 and 11.1%, respectively, of the pooled sample values. In addition, the subjects <1 year of age exhibited a trend suggestive of low hCES2 expression, but this difference failed to reach statistical significance because of large interindividual variability. The expression and activity of mCES1 and mCES2 were not significantly altered after the animals were treated with human growth hormone, indicating growth hormone may not be associated with the low level of CES expression during early developmental stages. No significant differences of the expression and activity of mCES1 and mCES2 were observed between sexually mature male and female mice. In conclusion, the expression and activity of CES1 and CES2 are age-related but independent of growth hormone level. Sex seems to be an unlikely factor contributing to the regulation of CES1 and CES2.
The Journal of Neuroscience | 2007
Heather A. Boger; Lawrence D. Middaugh; Kennerly S. Patrick; Sammanda Ramamoorthy; Emily D. Denehy; Hao Jie Zhu; Alejandra M. Pacchioni; Ann Charlotte Granholm; Jacqueline F. McGinty
Methamphetamine abuse in young adults has long-term deleterious effects on brain function that are associated with damage to monoaminergic neurons. Administration of glial cell line-derived neurotrophic factor (GDNF) protects dopamine neurons from the toxic effects of methamphetamine in animal models. Therefore, we hypothesized that a partial GDNF gene deletion would increase the susceptibility of mice to methamphetamine neurotoxicity during young adulthood and possibly increase age-related deterioration of behavior and dopamine function. Two weeks after a methamphetamine binge (4 × 10 mg/kg, i.p., at 2 h intervals), GDNF+/− mice had a significantly greater reduction of tyrosine hydroxylase immunoreactivity in the medial striatum, a proportionally greater depletion of dopamine and 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the striatum, and a greater increase in activated microglia in the substantia nigra than wild-type mice. At 12 months of age, methamphetamine-treated GDNF+/− mice exhibited less motor activity and lower levels of tyrosine hydroxylase-immunoreactivity, dopamine, DOPAC, and serotonin than wild-type mice. Greater striatal dopamine transporter activity in GDNF+/− mice may underlie their differential response to methamphetamine. These data suggest the possibility that methamphetamine use in young adults, when combined with lower levels of GDNF throughout life, may precipitate the appearance of parkinsonian-like behaviors during aging.
Drug Metabolism and Disposition | 2009
Hao Jie Zhu; John S. Markowitz
Oseltamivir phosphate is an ethyl ester prodrug widely used in the treatment and prevention of both Influenzavirus A and B infections. The conversion of oseltamivir to its active metabolite oseltamivir carboxylate is dependent on ester hydrolysis mediated by carboxylesterase 1 (CES1). We recently identified two functional CES1 variants p.Gly143Glu and p.Asp260fs in a research subject who displayed significant impairment in his ability to metabolize the selective CES1 substrate, methylphenidate. In vitro functional studies demonstrated that the presence of either of the two mutations can result in severe reductions in the catalytic efficiency of CES1 toward methylphenidate, which is required for hydrolysis and pharmacological deactivation. The aim of the present study was to investigate the function of these mutations on activating (hydrolyzing) oseltamivir to oseltamivir carboxylate using the cell lines expressing wild type (WT) and each mutant CES1. In vitro incubation studies demonstrated that the S9 fractions prepared from the cells transfected with WT CES1 and human liver tissues rapidly convert oseltamivir to oseltamivir carboxylate. However, the catalytic activity of the mutant hydrolases was dramatically hindered. The Vmax value of p.Gly143Glu was approximately 25% of that of WT enzyme, whereas the catalytic activity of p.Asp260fs was negligible. These results suggest that the therapeutic efficacy of oseltamivir could be compromised in treated patients expressing either functional CES1 mutation. Furthermore, the potential for increased adverse effects or toxicity as a result of exposure to high concentrations of the nonhydrolyzed prodrug should be considered.
Biochemical Pharmacology | 2009
Hao Jie Zhu; David I. Appel; Julie A. Johnson; Kenneth D. Chavin; John S. Markowitz
Carboxylesterase 1 (CES1) and carboxylesterase 2 (CES2) are the major hydrolytic enzymes responsible for the metabolism of numerous therapeutic agents as well as endogenous substrates. CES1 and CES2 differ distinctly in their substrate specificity and tissue distribution. In this study, we investigated the role of CES1 and CES2 in converting the antihypertensive prodrug trandolapril to its more active form trandolaprilat, and determined the influence of two newly identified CES1 mutations p.Gly143Glu and p.Asp260fs on trandolapril metabolism. Western blot analysis demonstrated that CES1 is expressed in human liver microsomes (HLM) but not in human intestinal microsomes (HIM). In vitro incubation studies were conducted to contrast the enzymatic activity of HLM as well as HIM upon trandolapril hydrolysis. Trandolapril was rapidly hydrolyzed to its principal active metabolite trandolaprilat after incubation with HLM. In contrast, in HIM, where CES2 is predominantly expressed, incubations did not produce any detectable trandolapril hydrolysis. Furthermore, hydrolysis of trandolapril catalyzed by wild type (WT) and mutant CES1 were assessed utilizing transfected Flp-In-293 cells stably expressing WT CES1 and two variants. WT CES1 efficiently hydrolyzed trandolapril to trandolaprilat with V(max) and K(m) values of 103.6+/-2.2 nmole/min/mg protein and 639.9+/-32.9muM, respectively. However, no appreciable trandolapril hydrolysis could be found after incubation with both p.Gly143Glu and p.Asp260fs variants. Thus, trandolapril appears to be a CES1 selective substrate while CES2 exerts little to no catalytic activity towards this compound. CES1 mutations p.Gly143Glu and p.Asp260fs are essentially dysfunctional enzymes with regard to the conversion of trandolapril to its more active metabolite trandolaprilat.
The Journal of Clinical Pharmacology | 2006
John S. Markowitz; C. Lindsay DeVane; Robert Malcolm; Holly A. Gefroh; Jun Sheng Wang; Hao Jie Zhu; Jennifer L. Donovan
Olanzapine (OLZ) is a second‐generation antipsychotic agent available in 2 solid oral dosage forms, a standard oral tablet (SOT) and an orally disintegrating tablet (ODT). This study assessed the absorption of each by different routes of administration. Secondarily, the influence of P‐glycoprotein (P‐gp) genotype was assessed. It was hypothesized that more rapid absorption of the OLZ ODT would occur when administered sublingually versus standard oral administration. A randomized, 3‐way crossover study assessed the 5‐mg OLZ formulations in healthy volunteers (n = 10). Blood was collected (0–8 hours) to assess OLZ pharmacokinetics using liquid chromatography/mass spectrometry. Both routes of ODT administration resulted in more measurable early concentraions relative to SOT. However, there were no statistically significant differences observed between any of the OLZ exposures for observed pharmacokinetic parameters (Cmax, Tmax, AUC0–8h). The homozygous TT genotype for P‐gp resulted in an increased AUC of OLZ for SOT administration but not for either condition where sublingual absorption could occur.