Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hao Tan is active.

Publication


Featured researches published by Hao Tan.


Bioinformatics | 2010

Cascleave: towards more accurate prediction of caspase substrate cleavage sites

Hao Tan; Hong-Bin Shen; Khalid Mahmood; Sarah E. Boyd; Geoffrey I. Webb; Tatsuya Akutsu; James C. Whisstock

MOTIVATION The caspase family of cysteine proteases play essential roles in key biological processes such as programmed cell death, differentiation, proliferation, necrosis and inflammation. The complete repertoire of caspase substrates remains to be fully characterized. Accordingly, systematic computational screening studies of caspase substrate cleavage sites may provide insight into the substrate specificity of caspases and further facilitating the discovery of putative novel substrates. RESULTS In this article we develop an approach (termed Cascleave) to predict both classical (i.e. following a P(1) Asp) and non-typical caspase cleavage sites. When using local sequence-derived profiles, Cascleave successfully predicted 82.2% of the known substrate cleavage sites, with a Matthews correlation coefficient (MCC) of 0.667. We found that prediction performance could be further improved by incorporating information such as predicted solvent accessibility and whether a cleavage sequence lies in a region that is most likely natively unstructured. Novel bi-profile Bayesian signatures were found to significantly improve the prediction performance and yielded the best performance with an overall accuracy of 87.6% and a MCC of 0.747, which is higher accuracy than published methods that essentially rely on amino acid sequence alone. It is anticipated that Cascleave will be a powerful tool for predicting novel substrate cleavage sites of caspases and shedding new insights on the unknown caspase-substrate interactivity relationship. AVAILABILITY http://sunflower.kuicr.kyoto-u.ac.jp/ approximately sjn/Cascleave/ CONTACT [email protected]; [email protected]; james; [email protected] SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


PLOS ONE | 2012

PROSPER: an integrated feature-based tool for predicting protease substrate cleavage sites.

Hao Tan; Andrew J. Perry; Tatsuya Akutsu; Geoffrey I. Webb; James C. Whisstock; Robert N. Pike

The ability to catalytically cleave protein substrates after synthesis is fundamental for all forms of life. Accordingly, site-specific proteolysis is one of the most important post-translational modifications. The key to understanding the physiological role of a protease is to identify its natural substrate(s). Knowledge of the substrate specificity of a protease can dramatically improve our ability to predict its target protein substrates, but this information must be utilized in an effective manner in order to efficiently identify protein substrates by in silico approaches. To address this problem, we present PROSPER, an integrated feature-based server for in silico identification of protease substrates and their cleavage sites for twenty-four different proteases. PROSPER utilizes established specificity information for these proteases (derived from the MEROPS database) with a machine learning approach to predict protease cleavage sites by using different, but complementary sequence and structure characteristics. Features used by PROSPER include local amino acid sequence profile, predicted secondary structure, solvent accessibility and predicted native disorder. Thus, for proteases with known amino acid specificity, PROSPER provides a convenient, pre-prepared tool for use in identifying protein substrates for the enzymes. Systematic prediction analysis for the twenty-four proteases thus far included in the database revealed that the features we have included in the tool strongly improve performance in terms of cleavage site prediction, as evidenced by their contribution to performance improvement in terms of identifying known cleavage sites in substrates for these enzymes. In comparison with two state-of-the-art prediction tools, PoPS and SitePrediction, PROSPER achieves greater accuracy and coverage. To our knowledge, PROSPER is the first comprehensive server capable of predicting cleavage sites of multiple proteases within a single substrate sequence using machine learning techniques. It is freely available at http://lightning.med.monash.edu.au/PROSPER/.


Bioinformatics | 2007

Predicting disulfide connectivity from protein sequence using multiple sequence feature vectors and secondary structure

Zheng Yuan; Hao Tan; Thomas Huber; Kevin Burrage

MOTIVATION Disulfide bonds are primary covalent crosslinks between two cysteine residues in proteins that play critical roles in stabilizing the protein structures and are commonly found in extracy-toplasmatic or secreted proteins. In protein folding prediction, the localization of disulfide bonds can greatly reduce the search in conformational space. Therefore, there is a great need to develop computational methods capable of accurately predicting disulfide connectivity patterns in proteins that could have potentially important applications. RESULTS We have developed a novel method to predict disulfide connectivity patterns from protein primary sequence, using a support vector regression (SVR) approach based on multiple sequence feature vectors and predicted secondary structure by the PSIPRED program. The results indicate that our method could achieve a prediction accuracy of 74.4% and 77.9%, respectively, when averaged on proteins with two to five disulfide bridges using 4-fold cross-validation, measured on the protein and cysteine pair on a well-defined non-homologous dataset. We assessed the effects of different sequence encoding schemes on the prediction performance of disulfide connectivity. It has been shown that the sequence encoding scheme based on multiple sequence feature vectors coupled with predicted secondary structure can significantly improve the prediction accuracy, thus enabling our method to outperform most of other currently available predictors. Our work provides a complementary approach to the current algorithms that should be useful in computationally assigning disulfide connectivity patterns and helps in the annotation of protein sequences generated by large-scale whole-genome projects. AVAILABILITY The prediction web server and Supplementary Material are accessible at http://foo.maths.uq.edu.au/~huber/disulfide


PLOS ONE | 2009

Prodepth: predict residue depth by support vector regression approach from protein sequences only.

Hao Tan; Khalid Mahmood; Ruby H. P. Law; Ashley M. Buckle; Geoffrey I. Webb; Tatsuya Akutsu; James C. Whisstock

Residue depth (RD) is a solvent exposure measure that complements the information provided by conventional accessible surface area (ASA) and describes to what extent a residue is buried in the protein structure space. Previous studies have established that RD is correlated with several protein properties, such as protein stability, residue conservation and amino acid types. Accurate prediction of RD has many potentially important applications in the field of structural bioinformatics, for example, facilitating the identification of functionally important residues, or residues in the folding nucleus, or enzyme active sites from sequence information. In this work, we introduce an efficient approach that uses support vector regression to quantify the relationship between RD and protein sequence. We systematically investigated eight different sequence encoding schemes including both local and global sequence characteristics and examined their respective prediction performances. For the objective evaluation of our approach, we used 5-fold cross-validation to assess the prediction accuracies and showed that the overall best performance could be achieved with a correlation coefficient (CC) of 0.71 between the observed and predicted RD values and a root mean square error (RMSE) of 1.74, after incorporating the relevant multiple sequence features. The results suggest that residue depth could be reliably predicted solely from protein primary sequences: local sequence environments are the major determinants, while global sequence features could influence the prediction performance marginally. We highlight two examples as a comparison in order to illustrate the applicability of this approach. We also discuss the potential implications of this new structural parameter in the field of protein structure prediction and homology modeling. This method might prove to be a powerful tool for sequence analysis.


Bioinformatics | 2008

HSEpred: predict half-sphere exposure from protein sequences

Hao Tan; Kazuhiro Takemoto; Tatsuya Akutsu

MOTIVATION Half-sphere exposure (HSE) is a newly developed two-dimensional solvent exposure measure. By conceptually separating an amino acids sphere in a protein structure into two half spheres which represent its distinct spatial neighborhoods in the upward and downward directions, the HSE-up and HSE-down measures show superior performance compared with other measures such as accessible surface area, residue depth and contact number. However, currently there is no existing method for the prediction of HSE measures from sequence data. RESULTS In this article, we propose a novel approach to predict the HSE measures and infer residue contact numbers using the predicted HSE values, based on a well-prepared non-homologous protein structure dataset. In particular, we employ support vector regression (SVR) to quantify the relationship between HSE measures and protein sequences and evaluate its prediction performance. We extensively explore five sequence-encoding schemes to examine their effects on the prediction performance. Our method could achieve the correlation coefficients of 0.72 and 0.68 between the predicted and observed HSE-up and HSE-down measures, respectively. Moreover, contact number can be accurately predicted by the summation of the predicted HSE-up and HSE-down values, which has further enlarged the application of this method. The successful application of SVR approach in this study suggests that it should be more useful in quantifying the protein sequence-structure relationship and predicting the structural property profiles from protein sequences. AVAILABILITY The prediction webserver and supplementary materials are accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/hse/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.


Bioinformatics | 2014

Cascleave 2.0, a new approach for predicting caspase and granzyme cleavage targets.

Mingjun Wang; Xing-Ming Zhao; Hao Tan; Tatsuya Akutsu; James C. Whisstock; Jiangning Song

MOTIVATION Caspases and granzyme B (GrB) are important proteases involved in fundamental cellular processes and play essential roles in programmed cell death, necrosis and inflammation. Although a number of substrates for both types have been experimentally identified, the complete repertoire of caspases and granzyme B substrates remained to be fully characterized. Accordingly, systematic bioinformatics studies of known cleavage sites may provide important insights into their substrate specificity and facilitate the discovery of novel substrates. RESULTS We develop a new bioinformatics tool, termed Cascleave 2.0, which builds on previous success of the Cascleave tool for predicting generic caspase cleavage sites. It can be efficiently used to predict potential caspase-specific cleavage sites for the human caspase-1, 3, 6, 7, 8 and GrB. In particular, we integrate heterogeneous sequence and protein functional information from various sources to improve the prediction accuracy of Cascleave 2.0. During classification, we use both maximum relevance minimum redundancy and forward feature selection techniques to quantify the relative contribution of each feature to prediction and thus remove redundant as well as irrelevant features. A systematic evaluation of Cascleave 2.0 using the benchmark data and comparison with other state-of-the-art tools using independent test data indicate that Cascleave 2.0 outperforms other tools on protease-specific cleavage site prediction of caspase-1, 3, 6, 7 and GrB. Cascleave 2.0 is anticipated to be used as a powerful tool for identifying novel substrates and cleavage sites of caspases and GrB and help understand the functional roles of these important proteases in human proteolytic cascades. AVAILABILITY AND IMPLEMENTATION http://www.structbioinfor.org/cascleave2/.


Scientific Reports | 2015

Accurate in silico identification of species-specific acetylation sites by integrating protein sequence-derived and functional features

Yuan Li; Mingjun Wang; Huilin Wang; Hao Tan; Ziding Zhang; Geoffrey I. Webb

Lysine acetylation is a reversible post-translational modification, playing an important role in cytokine signaling, transcriptional regulation, and apoptosis. To fully understand acetylation mechanisms, identification of substrates and specific acetylation sites is crucial. Experimental identification is often time-consuming and expensive. Alternative bioinformatics methods are cost-effective and can be used in a high-throughput manner to generate relatively precise predictions. Here we develop a method termed as SSPKA for species-specific lysine acetylation prediction, using random forest classifiers that combine sequence-derived and functional features with two-step feature selection. Feature importance analysis indicates functional features, applied for lysine acetylation site prediction for the first time, significantly improve the predictive performance. We apply the SSPKA model to screen the entire human proteome and identify many high-confidence putative substrates that are not previously identified. The results along with the implemented Java tool, serve as useful resources to elucidate the mechanism of lysine acetylation and facilitate hypothesis-driven experimental design and validation.


PLOS ONE | 2012

TANGLE: Two-Level Support Vector Regression Approach for Protein Backbone Torsion Angle Prediction from Primary Sequences

Hao Tan; Mingjun Wang; Geoffrey I. Webb; Tatsuya Akutsu

Protein backbone torsion angles (Phi) and (Psi) involve two rotation angles rotating around the Cα-N bond (Phi) and the Cα-C bond (Psi). Due to the planarity of the linked rigid peptide bonds, these two angles can essentially determine the backbone geometry of proteins. Accordingly, the accurate prediction of protein backbone torsion angle from sequence information can assist the prediction of protein structures. In this study, we develop a new approach called TANGLE (Torsion ANGLE predictor) to predict the protein backbone torsion angles from amino acid sequences. TANGLE uses a two-level support vector regression approach to perform real-value torsion angle prediction using a variety of features derived from amino acid sequences, including the evolutionary profiles in the form of position-specific scoring matrices, predicted secondary structure, solvent accessibility and natively disordered region as well as other global sequence features. When evaluated based on a large benchmark dataset of 1,526 non-homologous proteins, the mean absolute errors (MAEs) of the Phi and Psi angle prediction are 27.8° and 44.6°, respectively, which are 1% and 3% respectively lower than that using one of the state-of-the-art prediction tools ANGLOR. Moreover, the prediction of TANGLE is significantly better than a random predictor that was built on the amino acid-specific basis, with the p-value<1.46e-147 and 7.97e-150, respectively by the Wilcoxon signed rank test. As a complementary approach to the current torsion angle prediction algorithms, TANGLE should prove useful in predicting protein structural properties and assisting protein fold recognition by applying the predicted torsion angles as useful restraints. TANGLE is freely accessible at http://sunflower.kuicr.kyoto-u.ac.jp/~sjn/TANGLE/.


PLOS ONE | 2014

PredPPCrys: Accurate Prediction of Sequence Cloning, Protein Production, Purification and Crystallization Propensity from Protein Sequences Using Multi-Step Heterogeneous Feature Fusion and Selection

Huilin Wang; Mingjun Wang; Hao Tan; Yuan Li; Ziding Zhang

X-ray crystallography is the primary approach to solve the three-dimensional structure of a protein. However, a major bottleneck of this method is the failure of multi-step experimental procedures to yield diffraction-quality crystals, including sequence cloning, protein material production, purification, crystallization and ultimately, structural determination. Accordingly, prediction of the propensity of a protein to successfully undergo these experimental procedures based on the protein sequence may help narrow down laborious experimental efforts and facilitate target selection. A number of bioinformatics methods based on protein sequence information have been developed for this purpose. However, our knowledge on the important determinants of propensity for a protein sequence to produce high diffraction-quality crystals remains largely incomplete. In practice, most of the existing methods display poorer performance when evaluated on larger and updated datasets. To address this problem, we constructed an up-to-date dataset as the benchmark, and subsequently developed a new approach termed ‘PredPPCrys’ using the support vector machine (SVM). Using a comprehensive set of multifaceted sequence-derived features in combination with a novel multi-step feature selection strategy, we identified and characterized the relative importance and contribution of each feature type to the prediction performance of five individual experimental steps required for successful crystallization. The resulting optimal candidate features were used as inputs to build the first-level SVM predictor (PredPPCrys I). Next, prediction outputs of PredPPCrys I were used as the input to build second-level SVM classifiers (PredPPCrys II), which led to significantly enhanced prediction performance. Benchmarking experiments indicated that our PredPPCrys method outperforms most existing procedures on both up-to-date and previous datasets. In addition, the predicted crystallization targets of currently non-crystallizable proteins were provided as compendium data, which are anticipated to facilitate target selection and design for the worldwide structural genomics consortium. PredPPCrys is freely available at http://www.structbioinfor.org/PredPPCrys.


Journal of Bioinformatics and Computational Biology | 2011

BIOINFORMATIC APPROACHES FOR PREDICTING SUBSTRATES OF PROTEASES

Hao Tan; Sarah E. Boyd; Hong-Bin Shen; Khalid Mahmood; Geoffrey I. Webb; Tatsuya Akutsu; James C. Whisstock; Robert N. Pike

Collaboration


Dive into the Hao Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Geoffrey I. Webb

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

James C. Whisstock

Australian Research Council

View shared research outputs
Top Co-Authors

Avatar

Mingjun Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Hong-Bin Shen

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuhiro Takemoto

Kyushu Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuan Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Ziding Zhang

China Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge